These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28461030)

  • 1. Impact of X-ray energy on absorbed dose assessed with Monte Carlo simulations in a mouse tumor and in nearest organs irradiated with kilovoltage X-ray beams.
    Hamdi M; Mimi M; Bentourkia M
    Cancer Radiother; 2017 May; 21(3):190-198. PubMed ID: 28461030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between X-rays spectra and their effective energies in small animal CT tomographic imaging and dosimetry.
    Hamdi M; Mimi M; Bentourkia M
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):29-37. PubMed ID: 28005238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetric variation due to the photon beam energy in the small-animal irradiation: a Monte Carlo study.
    Chow JC; Leung MK; Lindsay PE; Jaffray DA
    Med Phys; 2010 Oct; 37(10):5322-9. PubMed ID: 21089767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of external beam radiation therapy to deep-seated targets with kilovoltage x-rays.
    Bazalova-Carter M; Weil MD; Breitkreutz DY; Wilfley BP; Graves EE
    Med Phys; 2017 Feb; 44(2):597-607. PubMed ID: 28133751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technical note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV-18 MeV.
    Hermida-López M; Lüdemann L; Flühs A; Brualla L
    Med Phys; 2014 Nov; 41(11):112103. PubMed ID: 25370654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereotactic breast irradiation with kilovoltage x-ray beams.
    Garnica-Garza HM
    Phys Med Biol; 2016 Jan; 61(2):983-95. PubMed ID: 26738938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations of different kilovoltage X-ray energy for three-dimensional converging stereotactic radiotherapy system: Monte Carlo simulations with CT data.
    Deloar HM; Kunieda E; Kawase T; Tsunoo T; Saitoh H; Ozaki M; Saito K; Takagi S; Sato O; Fujisaki T; Myojoyama A; Sorell G
    Med Phys; 2006 Dec; 33(12):4635-42. PubMed ID: 17278816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of robotic stereotactic body radiotherapy of lung tumors with kilovoltage x-ray beams.
    Sánchez-Arreola SV; Garnica-Garza HM
    Med Phys; 2017 Apr; 44(4):1224-1233. PubMed ID: 28133758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation of backscatter factors for kilovoltage x-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements.
    Kim J; Hill R; Claridge Mackonis E; Kuncic Z
    Phys Med Biol; 2010 Feb; 55(3):783-97. PubMed ID: 20071763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotational radiotherapy of breast cancer with polyenergetic kilovoltage X-ray beams: An experimental and Monte Carlo phantom study.
    Buonanno F; Sarno A; De Lucia PA; Di Lillo F; Masi M; Di Franco F; Mettivier G; Russo P
    Phys Med; 2019 Jun; 62():63-72. PubMed ID: 31153400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosimetry characterization of a multibeam radiotherapy treatment for age-related macular degeneration.
    Lee C; Chell E; Gertner M; Hansen S; Howell RW; Hanlon J; Bolch WE
    Med Phys; 2008 Nov; 35(11):5151-60. PubMed ID: 19070249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of ionization chambers for the relative dosimetry of kilovoltage x-ray beams.
    Hill R; Mo Z; Haque M; Baldock C
    Med Phys; 2009 Sep; 36(9):3971-81. PubMed ID: 19810470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment planning considerations in contrast-enhanced radiotherapy: energy and beam aperture optimization.
    Garnica-Garza HM
    Phys Med Biol; 2011 Jan; 56(2):341-55. PubMed ID: 21160112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).
    Tedgren AC; Hedman A; Grindborg JE; Carlsson GA
    Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of effects of nasal and facial shields on delivered radiation dose for superficial x-ray treatments.
    Yu PK; Butson MJ
    Phys Med Biol; 2013 Mar; 58(5):N95-N102. PubMed ID: 23422253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo determination of a nanoDot OSLD response using quality index for diagnostic kilovoltage X-ray beams.
    Araki F
    Phys Med; 2021 Apr; 84():101-108. PubMed ID: 33887616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique.
    Kakade NR; Sharma SD
    J Cancer Res Ther; 2015; 11(1):94-7. PubMed ID: 25879344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma.
    Candela-Juan C; Perez-Calatayud J; Ballester F; Rivard MJ
    Med Phys; 2013 Mar; 40(3):033901. PubMed ID: 23464344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE.
    Panettieri V; Barsoum P; Westermark M; Brualla L; Lax I
    Radiother Oncol; 2009 Oct; 93(1):94-101. PubMed ID: 19541380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.