BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28461215)

  • 41. Participation of locus coeruleus in breathing control in female rats.
    de Carvalho D; Patrone LGA; Marques DA; Vicente MC; Szawka RE; Anselmo-Franci JA; Bícego KC; Gargaglioni LH
    Respir Physiol Neurobiol; 2017 Nov; 245():29-36. PubMed ID: 28687484
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Locus coeruleus noradrenergic neurons and CO2 drive to breathing.
    Biancardi V; Bícego KC; Almeida MC; Gargaglioni LH
    Pflugers Arch; 2008 Mar; 455(6):1119-28. PubMed ID: 17851683
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of median preoptic nucleus and medullary noradrenergic neurons in cardiovascular and sympathetic responses of hemorrhagic rats.
    Naves LM; Marques SM; Mourão AA; Fajemiroye JO; Xavier CH; de Castro CH; Rebelo ACS; Rosa DA; Gomes RM; Colombari E; Pedrino GR
    Sci Rep; 2018 Jul; 8(1):11276. PubMed ID: 30050041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of ventral medullary catecholaminergic neurons for respiratory modulation of sympathetic outflow in rats.
    Moraes DJA; Bonagamba LGH; da Silva MP; Paton JFR; Machado BH
    Sci Rep; 2017 Dec; 7(1):16883. PubMed ID: 29203815
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A2 noradrenergic neurons regulate forced swim test immobility.
    Nam H; Kerman IA
    Physiol Behav; 2016 Oct; 165():339-49. PubMed ID: 27553574
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A5 region modulation of the cardiorespiratory responses evoked from parabrachial cell bodies in the anaesthetised rat.
    Dawid Milner MS; Lara JP; López de Miguel MP; López-González MV; Spyer KM; González-Barón S
    Brain Res; 2003 Aug; 982(1):108-18. PubMed ID: 12915245
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Control of respiratory and hypotensive response during hypoxic chemoreflex by A5 region neurons in rats.
    Pyatin VF; Tatarnikov VS; Glazkova EN
    Bull Exp Biol Med; 2006 Dec; 142(6):654-6. PubMed ID: 17603661
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential effects of neurotoxic destruction of descending noradrenergic pathways on acute and persistent nociceptive processing.
    Martin WJ; Gupta NK; Loo CM; Rohde DS; Basbaum AI
    Pain; 1999 Mar; 80(1-2):57-65. PubMed ID: 10204718
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A1 noradrenergic neurons lesions reduce natriuresis and hypertensive responses to hypernatremia in rats.
    da Silva EF; Freiria-Oliveira AH; Custódio CH; Ghedini PC; Bataus LA; Colombari E; de Castro CH; Colugnati DB; Rosa DA; Cravo SL; Pedrino GR
    PLoS One; 2013; 8(9):e73187. PubMed ID: 24039883
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of lesion of a5 and a7 brainstem noradrenergic areas or transection of brainstem pathways on sympathoadrenal activity in rats during immobilization stress.
    Kvetnansky R; Bodnar I; Shahar T; Uhereczky G; Krizanova O; Mravec B
    Neurochem Res; 2006 Feb; 31(2):267-75. PubMed ID: 16570211
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of the pontine Kölliker-Fuse nucleus reduces genioglossal activity elicited by stimulation of the retrotrapezoid chemoreceptor neurons.
    Silva JN; Lucena EV; Silva TM; Damasceno RS; Takakura AC; Moreira TS
    Neuroscience; 2016 Jul; 328():9-21. PubMed ID: 27126558
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hypercapnia selectively attenuates the somato-sympathetic reflex.
    Makeham JM; Goodchild AK; Costin NS; Pilowsky PM
    Respir Physiol Neurobiol; 2004 May; 140(2):133-43. PubMed ID: 15134661
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sympathetic neural outflow and chemoreflex sensitivity are related to spontaneous breathing rate in normal men.
    Narkiewicz K; van de Borne P; Montano N; Hering D; Kara T; Somers VK
    Hypertension; 2006 Jan; 47(1):51-5. PubMed ID: 16344363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lesions of the C1 catecholaminergic neurons of the ventrolateral medulla in rats using anti-DbetaH-saporin.
    Madden CJ; Ito S; Rinaman L; Wiley RG; Sved AF
    Am J Physiol; 1999 Oct; 277(4):R1063-75. PubMed ID: 10516246
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in the autonomic and respiratory patterns in mice submitted to short-term sustained hypoxia.
    Rodrigues KL; Souza JR; Bazilio DS; de Oliveira M; Moraes MPS; Moraes DJA; Machado BH
    Exp Physiol; 2021 Mar; 106(3):759-770. PubMed ID: 33501717
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of the pons in the carotid sympathetic chemoreflex.
    Koshiya N; Guyenet PG
    Am J Physiol; 1994 Aug; 267(2 Pt 2):R508-18. PubMed ID: 8067462
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential cardiorespiratory and sympathetic reflex responses to microinjection of neuromedin U in rat rostral ventrolateral medulla.
    Rahman AA; Shahid IZ; Pilowsky PM
    J Pharmacol Exp Ther; 2012 Apr; 341(1):213-24. PubMed ID: 22262923
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Respiratory and sympathetic chemoreflex regulation by Kölliker-Fuse neurons in rats.
    Damasceno RS; Takakura AC; Moreira TS
    Pflugers Arch; 2015 Feb; 467(2):231-9. PubMed ID: 24777830
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of catecholaminergic neurones of the caudal ventrolateral medulla in cardiovascular responses induced by acute changes in circulating volume in rats.
    Pedrino GR; Maurino I; de Almeida Colombari DS; Cravo SL
    Exp Physiol; 2006 Nov; 91(6):995-1005. PubMed ID: 16916893
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hypercapnia and hypoxia: chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves.
    Elam M; Yao T; Thorén P; Svensson TH
    Brain Res; 1981 Oct; 222(2):373-81. PubMed ID: 6793212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.