BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28461269)

  • 21. A leaf-level spectral library to support high-throughput plant phenotyping: predictive accuracy and model transfer.
    Wijewardane NK; Zhang H; Yang J; Schnable JC; Schachtman DP; Ge Y
    J Exp Bot; 2023 Aug; 74(14):4050-4062. PubMed ID: 37018460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of chlorophyll content based on optical properties of maize leaves.
    Pan W; Cheng X; Du R; Zhu X; Guo W
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 309():123843. PubMed ID: 38215563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PGD: a machine learning-based photosynthetic-related gene detection approach.
    Wang Y; Dai X; Fu D; Li P; Du B
    BMC Bioinformatics; 2022 May; 23(1):183. PubMed ID: 35581553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving yield by exploiting mechanisms underlying natural variation of photosynthesis.
    Lawson T; Kramer DM; Raines CA
    Curr Opin Biotechnol; 2012 Apr; 23(2):215-20. PubMed ID: 22296828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of paddy rice leaf area index using machine learning methods based on hyperspectral data from multi-year experiments.
    Wang L; Chang Q; Yang J; Zhang X; Li F
    PLoS One; 2018; 13(12):e0207624. PubMed ID: 30517144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters?
    Rodeghiero M; Niinemets U; Cescatti A
    Plant Cell Environ; 2007 Aug; 30(8):1006-22. PubMed ID: 17617828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The disastrous effects of salt dust deposition on cotton leaf photosynthesis and the cell physiological properties in the Ebinur Basin in Northwest China.
    Abuduwaili J; Zhaoyong Z; Feng qing J; Dong wei L
    PLoS One; 2015; 10(5):e0124546. PubMed ID: 25970440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectroscopy can predict key leaf traits associated with source-sink balance and carbon-nitrogen status.
    Ely KS; Burnett AC; Lieberman-Cribbin W; Serbin SP; Rogers A
    J Exp Bot; 2019 Mar; 70(6):1789-1799. PubMed ID: 30799496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth.
    Robert C; Bancal MO; Nicolas P; Lannou C; Ney B
    J Exp Bot; 2004 May; 55(399):1079-94. PubMed ID: 15073221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Metabolite Pathway between Bundle Sheath and Mesophyll: Quantification of Plasmodesmata in Leaves of C3 and C4 Monocots.
    Danila FR; Quick WP; White RG; Furbank RT; von Caemmerer S
    Plant Cell; 2016 Jun; 28(6):1461-71. PubMed ID: 27288224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging.
    Meacham-Hensold K; Fu P; Wu J; Serbin S; Montes CM; Ainsworth E; Guan K; Dracup E; Pederson T; Driever S; Bernacchi C
    J Exp Bot; 2020 Apr; 71(7):2312-2328. PubMed ID: 32092145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermography to explore plant-environment interactions.
    Costa JM; Grant OM; Chaves MM
    J Exp Bot; 2013 Oct; 64(13):3937-49. PubMed ID: 23599272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cold-tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species.
    Yamori W; Noguchi K; Hikosaka K; Terashima I
    Plant Cell Physiol; 2009 Feb; 50(2):203-15. PubMed ID: 19054809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving photosynthetic efficiency for greater yield.
    Zhu XG; Long SP; Ort DR
    Annu Rev Plant Biol; 2010; 61():235-61. PubMed ID: 20192734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation.
    Kromdijk J; Long SP
    Proc Biol Sci; 2016 Mar; 283(1826):20152578. PubMed ID: 26962136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Will C3 crops enhanced with the C4 CO2-concentrating mechanism live up to their full potential (yield)?
    Driever SM; Kromdijk J
    J Exp Bot; 2013 Oct; 64(13):3925-35. PubMed ID: 23585671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selecting informative bands for partial least squares regressions improves their goodness-of-fits to estimate leaf photosynthetic parameters from hyperspectral data.
    Jin J; Wang Q; Song G
    Photosynth Res; 2022 Jan; 151(1):71-82. PubMed ID: 34491493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit.
    Thomas CL; Alcock TD; Graham NS; Hayden R; Matterson S; Wilson L; Young SD; Dupuy LX; White PJ; Hammond JP; Danku JM; Salt DE; Sweeney A; Bancroft I; Broadley MR
    BMC Plant Biol; 2016 Oct; 16(1):214. PubMed ID: 27716103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.