BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 28461401)

  • 1. Reducing Stomatal Density in Barley Improves Drought Tolerance without Impacting on Yield.
    Hughes J; Hepworth C; Dutton C; Dunn JA; Hunt L; Stephens J; Waugh R; Cameron DD; Gray JE
    Plant Physiol; 2017 Jun; 174(2):776-787. PubMed ID: 28461401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar.
    Wang C; Liu S; Dong Y; Zhao Y; Geng A; Xia X; Yin W
    Plant Biotechnol J; 2016 Mar; 14(3):849-60. PubMed ID: 26228739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions.
    Caine RS; Yin X; Sloan J; Harrison EL; Mohammed U; Fulton T; Biswal AK; Dionora J; Chater CC; Coe RA; Bandyopadhyay A; Murchie EH; Swarup R; Quick WP; Gray JE
    New Phytol; 2019 Jan; 221(1):371-384. PubMed ID: 30043395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Barley strigolactone signalling mutant hvd14.d reveals the role of strigolactones in abscisic acid-dependent response to drought.
    Marzec M; Daszkowska-Golec A; Collin A; Melzer M; Eggert K; Szarejko I
    Plant Cell Environ; 2020 Sep; 43(9):2239-2253. PubMed ID: 32501539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.
    Xu M; Gruber BD; Delhaize E; White RG; James RA; You J; Yang Z; Ryan PR
    Physiol Plant; 2015 Jan; 153(1):183-93. PubMed ID: 24853664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repression of drought-induced cysteine-protease genes alters barley leaf structure and responses to abiotic and biotic stresses.
    Gomez-Sanchez A; Gonzalez-Melendi P; Santamaria ME; Arbona V; Lopez-Gonzalvez A; Garcia A; Hensel G; Kumlehn J; Martinez M; Diaz I
    J Exp Bot; 2019 Apr; 70(7):2143-2155. PubMed ID: 30452688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty.
    Gao Y; Wu M; Zhang M; Jiang W; Liang E; Zhang D; Zhang C; Xiao N; Chen J
    Plant Mol Biol; 2018 Jul; 97(4-5):311-323. PubMed ID: 29869742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The barley miR393 has multiple roles in regulation of seedling growth, stomatal density, and drought stress tolerance.
    Yuan W; Suo J; Shi B; Zhou C; Bai B; Bian H; Zhu M; Han N
    Plant Physiol Biochem; 2019 Sep; 142():303-311. PubMed ID: 31351321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in protein abundance and activity induced by drought during generative development of winter barley (Hordeum vulgare L.).
    Gołębiowska-Pikania G; Kopeć P; Surówka E; Janowiak F; Krzewska M; Dubas E; Nowicka A; Kasprzyk J; Ostrowska A; Malaga S; Hura T; Żur I
    J Proteomics; 2017 Oct; 169():73-86. PubMed ID: 28751243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance.
    Liang J; Chen X; Deng G; Pan Z; Zhang H; Li Q; Yang K; Long H; Yu M
    BMC Genomics; 2017 Oct; 18(1):775. PubMed ID: 29020945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes: impact on plant development, stress tolerance and yield.
    Yang Y; Al-Baidhani HHJ; Harris J; Riboni M; Li Y; Mazonka I; Bazanova N; Chirkova L; Sarfraz Hussain S; Hrmova M; Haefele S; Lopato S; Kovalchuk N
    Plant Biotechnol J; 2020 Mar; 18(3):829-844. PubMed ID: 31487424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions.
    Qu M; Essemine J; Xu J; Ablat G; Perveen S; Wang H; Chen K; Zhao Y; Chen G; Chu C; Zhu X
    Plant J; 2020 Dec; 104(5):1334-1347. PubMed ID: 33015858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Evolution of Plant 14-3-3 Proteins and Function of Hv14-3-3A in Stomatal Regulation and Drought Tolerance.
    Jiang W; Tong T; Li W; Huang Z; Chen G; Zeng F; Riaz A; Amoanimaa-Dede H; Pan R; Zhang W; Deng F; Chen ZH
    Plant Cell Physiol; 2023 Jan; 63(12):1857-1872. PubMed ID: 35323970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced stomatal density in bread wheat leads to increased water-use efficiency.
    Dunn J; Hunt L; Afsharinafar M; Meselmani MA; Mitchell A; Howells R; Wallington E; Fleming AJ; Gray JE
    J Exp Bot; 2019 Sep; 70(18):4737-4748. PubMed ID: 31172183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H
    Negi S; Tak H; Ganapathi TR
    Plant Mol Biol; 2018 Mar; 96(4-5):457-471. PubMed ID: 29470695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saussurea involucrata PIP2;4 improves growth and drought tolerance in Nicotiana tabacum by increasing stomatal density and sensitivity.
    Xin H; Li Q; Wang S; Zhang Z; Wu X; Liu R; Zhu J; Li J
    Plant Sci; 2023 Jan; 326():111526. PubMed ID: 36343868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stomatal traits as a determinant of superior salinity tolerance in wild barley.
    Kiani-Pouya A; Rasouli F; Rabbi B; Falakboland Z; Yong M; Chen ZH; Zhou M; Shabala S
    J Plant Physiol; 2020 Feb; 245():153108. PubMed ID: 31927218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress.
    Agurla S; Gahir S; Munemasa S; Murata Y; Raghavendra AS
    Adv Exp Med Biol; 2018; 1081():215-232. PubMed ID: 30288712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage.
    Guo P; Baum M; Grando S; Ceccarelli S; Bai G; Li R; von Korff M; Varshney RK; Graner A; Valkoun J
    J Exp Bot; 2009; 60(12):3531-44. PubMed ID: 19561048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress.
    Seiler C; Harshavardhan VT; Reddy PS; Hensel G; Kumlehn J; Eschen-Lippold L; Rajesh K; Korzun V; Wobus U; Lee J; Selvaraj G; Sreenivasulu N
    Plant Physiol; 2014 Apr; 164(4):1677-96. PubMed ID: 24610749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.