BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 28461459)

  • 1. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics.
    Lei T; Guan M; Liu J; Lin HC; Pfattner R; Shaw L; McGuire AF; Huang TC; Shao L; Cheng KT; Tok JB; Bao Z
    Proc Natl Acad Sci U S A; 2017 May; 114(20):5107-5112. PubMed ID: 28461459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.
    Quevedo-Lopez MA; Wondmagegn WT; Alshareef HN; Ramirez-Bon R; Gnade BE
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5532-8. PubMed ID: 21770215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsically stretchable and healable semiconducting polymer for organic transistors.
    Oh JY; Rondeau-Gagné S; Chiu YC; Chortos A; Lissel F; Wang GN; Schroeder BC; Kurosawa T; Lopez J; Katsumata T; Xu J; Zhu C; Gu X; Bae WG; Kim Y; Jin L; Chung JW; Tok JB; Bao Z
    Nature; 2016 Nov; 539(7629):411-415. PubMed ID: 27853213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Organic Electronics in Biology: Materials and Devices.
    Liao C; Zhang M; Yao MY; Hua T; Li L; Yan F
    Adv Mater; 2015 Dec; 27(46):7493-527. PubMed ID: 25393596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.
    Kang SK; Park G; Kim K; Hwang SW; Cheng H; Shin J; Chung S; Kim M; Yin L; Lee JC; Lee KM; Rogers JA
    ACS Appl Mater Interfaces; 2015 May; 7(17):9297-305. PubMed ID: 25867894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Thermally Stable, Green Solvent Disintegrable, and Recyclable Polymer Substrates for Flexible Electronics.
    Chen L; Yu H; Dirican M; Fang D; Tian Y; Yan C; Xie J; Jia D; Liu H; Wang J; Tang F; Zhang X; Tao J
    Macromol Rapid Commun; 2020 Oct; 41(19):e2000292. PubMed ID: 32833274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.
    Takeda Y; Hayasaka K; Shiwaku R; Yokosawa K; Shiba T; Mamada M; Kumaki D; Fukuda K; Tokito S
    Sci Rep; 2016 May; 6():25714. PubMed ID: 27157914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of Biomaterials into Sensors Based on Organic Thin-Film Transistors.
    Wu X; Zhou J; Huang J
    Macromol Rapid Commun; 2018 Aug; 39(15):e1800084. PubMed ID: 29790213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.
    Jung YH; Chang TH; Zhang H; Yao C; Zheng Q; Yang VW; Mi H; Kim M; Cho SJ; Park DW; Jiang H; Lee J; Qiu Y; Zhou W; Cai Z; Gong S; Ma Z
    Nat Commun; 2015 May; 6():7170. PubMed ID: 26006731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient, biocompatible electronics and energy harvesters based on ZnO.
    Dagdeviren C; Hwang SW; Su Y; Kim S; Cheng H; Gur O; Haney R; Omenetto FG; Huang Y; Rogers JA
    Small; 2013 Oct; 9(20):3398-404. PubMed ID: 23606533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.
    Irimia-Vladu M
    Chem Soc Rev; 2014 Jan; 43(2):588-610. PubMed ID: 24121237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.
    Cao X; Chen H; Gu X; Liu B; Wang W; Cao Y; Wu F; Zhou C
    ACS Nano; 2014 Dec; 8(12):12769-76. PubMed ID: 25497107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures.
    Hlaing H; Kim CH; Carta F; Nam CY; Barton RA; Petrone N; Hone J; Kymissis I
    Nano Lett; 2015 Jan; 15(1):69-74. PubMed ID: 25517922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomaterials in Skin-Inspired Electronics: Toward Soft and Robust Skin-like Electronic Nanosystems.
    Son D; Bao Z
    ACS Nano; 2018 Dec; 12(12):11731-11739. PubMed ID: 30460841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesive lithography for fabricating organic electronic and optoelectronics devices.
    Wang Z; Xing R; Yu X; Han Y
    Nanoscale; 2011 Jul; 3(7):2663-78. PubMed ID: 21698322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance biodegradable/transient electronics on biodegradable polymers.
    Hwang SW; Song JK; Huang X; Cheng H; Kang SK; Kim BH; Kim JH; Yu S; Huang Y; Rogers JA
    Adv Mater; 2014 Jun; 26(23):3905-11. PubMed ID: 24692101
    [No Abstract]   [Full Text] [Related]  

  • 18. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors.
    Li J; Zhao Y; Tan HS; Guo Y; Di CA; Yu G; Liu Y; Lin M; Lim SH; Zhou Y; Su H; Ong BS
    Sci Rep; 2012; 2():754. PubMed ID: 23082244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Molecular Design on Degradation Lifetimes of Degradable Imine-Based Semiconducting Polymers.
    Chiong JA; Zheng Y; Zhang S; Ma G; Wu Y; Ngaruka G; Lin Y; Gu X; Bao Z
    J Am Chem Soc; 2022 Mar; 144(8):3717-3726. PubMed ID: 35179880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan-gated organic transistors printed on ethyl cellulose as a versatile platform for edible electronics and bioelectronics.
    Sharova AS; Modena F; Luzio A; Melloni F; Cataldi P; Viola F; Lamanna L; Zorn NF; Sassi M; Ronchi C; Zaumseil J; Beverina L; Antognazza MR; Caironi M
    Nanoscale; 2023 Jun; 15(25):10808-10819. PubMed ID: 37334549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.