These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 2846157)
1. Lack of correlation between induction of chemotactic peptide receptors and stimulus-induced actin polymerization in HL-60 cells treated with dibutyryl cyclic adenosine monophosphate or retinoic acid. Rao KM; Currie MS; Ruff JC; Cohen HJ Cancer Res; 1988 Dec; 48(23):6721-6. PubMed ID: 2846157 [TBL] [Abstract][Full Text] [Related]
2. Chemotactic peptide receptor-cytoskeletal interactions and functional correlations in differentiated HL-60 cells and human polymorphonuclear leukocytes. Rao KM; Currie MS; Cohen HJ; Weinberg JB J Cell Physiol; 1989 Oct; 141(1):119-25. PubMed ID: 2550479 [TBL] [Abstract][Full Text] [Related]
3. Dibutyryl cyclic AMP induces formyl peptide receptor expression and chemotactic responses in a human eosinophilic cell line, EoL-1. Uenoyama Y; Ohshima Y; Morita M; Akutagawa H; Nambu M; Kim KM; Mayumi M; Mikawa H Exp Hematol; 1991 Sep; 19(8):823-8. PubMed ID: 1651253 [TBL] [Abstract][Full Text] [Related]
4. Signal transducing properties of the N-formyl peptide receptor expressed in undifferentiated HL60 cells. Prossnitz ER; Quehenberger O; Cochrane CG; Ye RD J Immunol; 1993 Nov; 151(10):5704-15. PubMed ID: 8228256 [TBL] [Abstract][Full Text] [Related]
5. Granulocyte colony-stimulating factor, not granulocyte-macrophage colony-stimulating factor, co-operates with retinoic acid on the induction of functional N-formyl-methionyl-phenylalanine receptors in HL-60 cells. Sakashita A; Nakamaki T; Tsuruoka N; Honma Y; Hozumi M Leukemia; 1991 Jan; 5(1):26-31. PubMed ID: 1705636 [TBL] [Abstract][Full Text] [Related]
6. Differential uncoupling of chemoattractant receptors from G proteins in retinoic acid-differentiated HL-60 granulocytes. Erbeck K; Klein JB; McLeish KR J Immunol; 1993 Mar; 150(5):1913-21. PubMed ID: 8382247 [TBL] [Abstract][Full Text] [Related]
7. Differentiation of U-937 histiocytic lymphoma cells towards mature neutrophilic granulocytes by dibutyryl cyclic adenosine-3',5'-monophosphate. Laskin DL; Beavis AJ; Sirak AA; O'Connell SM; Laskin JD Cancer Res; 1990 Jan; 50(1):20-5. PubMed ID: 2152772 [TBL] [Abstract][Full Text] [Related]
8. Cooperative effect of tumor necrosis factor and gamma-interferon on chemotactic peptide receptor expression and stimulus-induced actin polymerization in HL-60 cells. Rao KM; Misukonis MA; Cohen HJ; Weinberg JB Blood; 1988 Apr; 71(4):1062-7. PubMed ID: 3128345 [TBL] [Abstract][Full Text] [Related]
9. Kinetic analysis of chemotactic peptide-induced actin polymerization in neutrophils. Wang DH; Berry K; Howard TH Cell Motil Cytoskeleton; 1990; 16(1):80-7. PubMed ID: 2354527 [TBL] [Abstract][Full Text] [Related]
10. Differential effects of retinoic acid (RA) and N-(4-hydroxyphenyl) retinamide (4-HPR) on cell growth, induction of differentiation, and changes in p34cdc2, Bcl-2, and actin expression in the human promyelocytic HL-60 leukemic cells. Dipietrantonio A; Hsieh TC; Wu JM Biochem Biophys Res Commun; 1996 Jul; 224(3):837-42. PubMed ID: 8713132 [TBL] [Abstract][Full Text] [Related]
11. Calcium ionophore, phorbol ester, and chemotactic peptide-induced cytoskeleton reorganization in human neutrophils. Howard TH; Wang D J Clin Invest; 1987 May; 79(5):1359-64. PubMed ID: 3106415 [TBL] [Abstract][Full Text] [Related]
12. IFN-gamma enhances expression of formyl peptide receptors and guanine nucleotide-binding proteins by HL-60 granulocytes. Klein JB; Scherzer JA; McLeish KR J Immunol; 1992 Apr; 148(8):2483-8. PubMed ID: 1560204 [TBL] [Abstract][Full Text] [Related]
13. Thrombin chemotactic stimulation of HL-60 cells: studies on thrombin responsiveness as a function of differentiation. Bar-Shavit R; Hruska KA; Kahn AJ; Wilner GD J Cell Physiol; 1987 May; 131(2):255-61. PubMed ID: 3034923 [TBL] [Abstract][Full Text] [Related]
14. Cellular F-actin levels as a marker for cellular transformation: relationship to cell division and differentiation. Rao JY; Hurst RE; Bales WD; Jones PL; Bass RA; Archer LT; Bell PB; Hemstreet GP Cancer Res; 1990 Apr; 50(8):2215-20. PubMed ID: 2317809 [TBL] [Abstract][Full Text] [Related]
15. The role of increased calcium influx rate in receptor mediated function of differentiating HL-60 cells. Aviram A; Rephaeli A; Shaklai M Cell Calcium; 1990 Apr; 11(4):269-74. PubMed ID: 2163284 [TBL] [Abstract][Full Text] [Related]
16. A mathematical model for ligand/receptor/G-protein dynamics and actin polymerization in human neutrophils. Adams JA; Omann GM; Linderman JJ J Theor Biol; 1998 Aug; 193(4):543-60. PubMed ID: 9745752 [TBL] [Abstract][Full Text] [Related]
17. Adenosine inhibits actin dynamics in human neutrophils: evidence for the involvement of cAMP. Zalavary S; Bengtsson T Eur J Cell Biol; 1998 Feb; 75(2):128-39. PubMed ID: 9548370 [TBL] [Abstract][Full Text] [Related]
18. Changes in actin state and chemotactic peptide receptor expression in granulocytes during cytokine administration after autologous bone marrow transplantation. Rao KM; Kilby DL; Currie MS; Cohen HJ; Peters WP Lymphokine Cytokine Res; 1992 Feb; 11(1):15-21. PubMed ID: 1374269 [TBL] [Abstract][Full Text] [Related]
19. Lipopolysaccharide modulates chemotactic peptide-induced actin polymerization in neutrophils. Howard TH; Wang D; Berkow RL J Leukoc Biol; 1990 Jan; 47(1):13-24. PubMed ID: 2294151 [TBL] [Abstract][Full Text] [Related]
20. Actin polymerization induced by chemotactic peptide and concanavalin A in rat neutrophils. Rao KM; Varani J J Immunol; 1982 Oct; 129(4):1605-7. PubMed ID: 6286771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]