These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28461938)

  • 1. 3D printing: clinical applications in orthopaedics and traumatology.
    Auricchio F; Marconi S
    EFORT Open Rev; 2016 May; 1(5):121-127. PubMed ID: 28461938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed patient-specific applications in orthopedics.
    Wong KC
    Orthop Res Rev; 2016; 8():57-66. PubMed ID: 30774470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Use of preoperative planning and 3D printing in orthopedics and traumatology: entering a new era].
    Moya D; Gobbato B; Valente S; Roca R
    Acta Ortop Mex; 2022; 36(1):39-47. PubMed ID: 36099572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects.
    Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR
    J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed ventricular septal defect patch: a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing.
    Giannopoulos AA; Chepelev L; Sheikh A; Wang A; Dang W; Akyuz E; Hong C; Wake N; Pietila T; Dydynski PB; Mitsouras D; Rybicki FJ
    3D Print Med; 2015; 1(1):3. PubMed ID: 30050972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of three-dimensional (3D) printing on quantitative and qualitative outcomes in paediatric orthopaedic osteotomies: a systematic review.
    Raza M; Murphy D; Gelfer Y
    EFORT Open Rev; 2021 Feb; 6(2):130-138. PubMed ID: 33828856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques.
    Shui W; Zhou M; Chen S; Pan Z; Deng Q; Yao Y; Pan H; He T; Wang X
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):13-23. PubMed ID: 27480284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Value of 3D printing for the comprehension of surgical anatomy.
    Marconi S; Pugliese L; Botti M; Peri A; Cavazzi E; Latteri S; Auricchio F; Pietrabissa A
    Surg Endosc; 2017 Oct; 31(10):4102-4110. PubMed ID: 28281114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Use of Three-dimensional Model Technology in Urology: A Road Map for Personalised Surgical Planning.
    Porpiglia F; Amparore D; Checcucci E; Autorino R; Manfredi M; Iannizzi G; Fiori C;
    Eur Urol Focus; 2018 Sep; 4(5):652-656. PubMed ID: 30293946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of 3D reconstruction cloacagrams and 3D printing in cloacal malformations.
    Ahn JJ; Shnorhavorian M; Amies Oelschlager AE; Ripley B; Shivaram GM; Avansino JR; Merguerian PA
    J Pediatr Urol; 2017 Aug; 13(4):395.e1-395.e6. PubMed ID: 28673795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive manufacturing applications in orthopaedics: A review.
    Javaid M; Haleem A
    J Clin Orthop Trauma; 2018; 9(3):202-206. PubMed ID: 30202149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed model for hands-on training in dental traumatology.
    Reymus M; Fotiadou C; Hickel R; Diegritz C
    Int Endod J; 2018 Nov; 51(11):1313-1319. PubMed ID: 29729097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and congenital heart disease interventions: the role of three-dimensional printing.
    Meier LM; Meineri M; Qua Hiansen J; Horlick EM
    Neth Heart J; 2017 Feb; 25(2):65-75. PubMed ID: 28083857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Value of 3D Printing Models of Left Atrial Appendage Using Real-Time 3D Transesophageal Echocardiographic Data in Left Atrial Appendage Occlusion: Applications toward an Era of Truly Personalized Medicine.
    Liu P; Liu R; Zhang Y; Liu Y; Tang X; Cheng Y
    Cardiology; 2016; 135(4):255-261. PubMed ID: 27537503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Office 3D-printing in paediatric orthopaedics: the orthopaedic surgeon's guide.
    Lam KY; Mark CWM; Yee SY
    Transl Pediatr; 2021 Mar; 10(3):474-484. PubMed ID: 33850806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects.
    Tetsworth K; Block S; Glatt V
    SICOT J; 2017; 3():16. PubMed ID: 28220752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning.
    Ploch CC; Mansi CSSA; Jayamohan J; Kuhl E
    World Neurosurg; 2016 Jun; 90():668-674. PubMed ID: 26924117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing and high tibial osteotomy.
    Jones GG; Jaere M; Clarke S; Cobb J
    EFORT Open Rev; 2018 May; 3(5):254-259. PubMed ID: 29951264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utility of virtual monoenergetic images from spectral detector computed tomography in improving image segmentation for purposes of 3D printing and modeling.
    Kikano E; Grosse Hokamp N; Ciancibello L; Ramaiya N; Kosmas C; Gupta A
    3D Print Med; 2019 Jan; 5(1):1. PubMed ID: 30659415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Use of Three-Dimensional Printing Model in the Training of Choledochoscopy Techniques.
    Li A; Tang R; Rong Z; Zeng J; Xiang C; Yu L; Zhao W; Dong J
    World J Surg; 2018 Dec; 42(12):4033-4038. PubMed ID: 30066020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.