These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 28462032)
1. The emerging contribution of social wasps to grape rot disease ecology. Madden AA; Boyden SD; Soriano JN; Corey TB; Leff JW; Fierer N; Starks PT PeerJ; 2017; 5():e3223. PubMed ID: 28462032 [TBL] [Abstract][Full Text] [Related]
2. First Report of Aspergillus carbonarius Causing Sour Rot of Table Grapes (Vitis vinifera) in California. Rooney-Latham S; Janousek CN; Eskalen A; Gubler WD Plant Dis; 2008 Apr; 92(4):651. PubMed ID: 30769622 [TBL] [Abstract][Full Text] [Related]
3. New insights into the ecological interaction between grape berry microorganisms and Drosophila flies during the development of sour rot. Barata A; Santos SC; Malfeito-Ferreira M; Loureiro V Microb Ecol; 2012 Aug; 64(2):416-30. PubMed ID: 22438040 [TBL] [Abstract][Full Text] [Related]
4. The epiphytic microbiota of sour rot-affected grapes differs minimally from that of healthy grapes, indicating causal organisms are already present on healthy berries. Hall ME; O'Bryon I; Wilcox WF; Osier MV; Cadle-Davidson L PLoS One; 2019; 14(3):e0211378. PubMed ID: 30917111 [TBL] [Abstract][Full Text] [Related]
5. The microbial ecology of wine grape berries. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021 [TBL] [Abstract][Full Text] [Related]
7. Diversity and spoilage potential of microbial communities associated with grape sour rot in eastern coastal areas of China. Gao H; Yin X; Jiang X; Shi H; Yang Y; Wang C; Dai X; Chen Y; Wu X PeerJ; 2020; 8():e9376. PubMed ID: 32607286 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of gaseous ozone to counteract postharvest table grape sour rot. Pinto L; Caputo L; Quintieri L; de Candia S; Baruzzi F Food Microbiol; 2017 Sep; 66():190-198. PubMed ID: 28576368 [TBL] [Abstract][Full Text] [Related]
9. Assessment of Injuries Caused by Anastrepha fraterculus (Wied.) (Diptera: Tephritidae) on the Incidence of Bunch Rot Diseases in Table Grape. Machota R; Bortoli LC; Cavalcanti FR; Botton M; Grützmacher AD Neotrop Entomol; 2016 Aug; 45(4):361-8. PubMed ID: 26911161 [TBL] [Abstract][Full Text] [Related]
10. Drosophila suzukii (Diptera: Drosophilidae) Contributes to the Development of Sour Rot in Grape. Ioriatti C; Guzzon R; Anfora G; Ghidoni F; Mazzoni V; Villegas TR; Dalton DT; Walton VM J Econ Entomol; 2018 Feb; 111(1):283-292. PubMed ID: 29202199 [TBL] [Abstract][Full Text] [Related]
11. Volatiles of Grape Inoculated with Microorganisms: Modulation of Grapevine Moth Oviposition and Field Attraction. Tasin M; Larsson Herrera S; Knight AL; Barros-Parada W; Fuentes Contreras E; Pertot I Microb Ecol; 2018 Oct; 76(3):751-761. PubMed ID: 29526022 [TBL] [Abstract][Full Text] [Related]
12. First Report of Fruit Rot of Grapes (Vitis vinifera) Caused by Cladosporium cladosporioides in Xinjiang, China. Liu Z; Jiao RL; Chen SY; Ren Y; Zhang L; Zhang D; Chen JY; Guoying L Plant Dis; 2021 Jul; ():. PubMed ID: 34319766 [TBL] [Abstract][Full Text] [Related]
13. Grape Sour Rot: A Four-Way Interaction Involving the Host, Yeast, Acetic Acid Bacteria, and Insects. Hall ME; Loeb GM; Cadle-Davidson L; Evans KJ; Wilcox WF Phytopathology; 2018 Dec; 108(12):1429-1442. PubMed ID: 29969063 [TBL] [Abstract][Full Text] [Related]
14. Candida sake CPA-1 and other biologically based products as potential control strategies to reduce sour rot of grapes. Calvo-Garrido C; Viñas I; Elmer P; Usall J; Teixidó N Lett Appl Microbiol; 2013 Oct; 57(4):356-61. PubMed ID: 23789778 [TBL] [Abstract][Full Text] [Related]
15. Changes in sour rotten grape berry microbiota during ripening and wine fermentation. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Mar; 154(3):152-61. PubMed ID: 22277696 [TBL] [Abstract][Full Text] [Related]
16. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. Steel CC; Blackman JW; Schmidtke LM J Agric Food Chem; 2013 Jun; 61(22):5189-206. PubMed ID: 23675852 [TBL] [Abstract][Full Text] [Related]
17. Fungi and mycotoxins in vineyards and grape products. Hocking AD; Leong SL; Kazi BA; Emmett RW; Scott ES Int J Food Microbiol; 2007 Oct; 119(1-2):84-8. PubMed ID: 17765989 [TBL] [Abstract][Full Text] [Related]
18. Growth and metabolite production of a grape sour rot yeast-bacterium consortium on different carbon sources. Pinto L; Malfeito-Ferreira M; Quintieri L; Silva AC; Baruzzi F Int J Food Microbiol; 2019 May; 296():65-74. PubMed ID: 30851642 [TBL] [Abstract][Full Text] [Related]
19. Sour rot-damaged grapes are sources of wine spoilage yeasts. Barata A; González S; Malfeito-Ferreira M; Querol A; Loureiro V FEMS Yeast Res; 2008 Nov; 8(7):1008-17. PubMed ID: 18554306 [TBL] [Abstract][Full Text] [Related]
20. Knowledge gaps on grape sour rot inferred from a systematic literature review. Brischetto C; Rossi V; Fedele G Front Plant Sci; 2024; 15():1415379. PubMed ID: 39022603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]