These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28462361)

  • 21. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.
    Nazemi SM; Cooper DM; Johnston JD
    Med Eng Phys; 2016 Sep; 38(9):978-87. PubMed ID: 27372175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluid-structure interaction (FSI) modeling of bone marrow through trabecular bone structure under compression.
    Rabiatul AAR; Fatihhi SJ; Md Saad AP; Zakaria Z; Harun MN; Kadir MRA; Öchsner A; Zaman TK; Syahrom A
    Biomech Model Mechanobiol; 2021 Jun; 20(3):957-968. PubMed ID: 33547975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Permeability evaluation of 45S5 Bioglass-based scaffolds for bone tissue engineering.
    Ochoa I; Sanz-Herrera JA; García-Aznar JM; Doblaré M; Yunos DM; Boccaccini AR
    J Biomech; 2009 Feb; 42(3):257-60. PubMed ID: 19105999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.
    Rahbari A; Montazerian H; Davoodi E; Homayoonfar S
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):231-241. PubMed ID: 27494073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micro CT and Micro MR imaging of 3D architecture of animal skeleton.
    Jiang Y; Zhao J; White DL; Genant HK
    J Musculoskelet Neuronal Interact; 2000 Sep; 1(1):45-51. PubMed ID: 15758525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational fluid dynamics simulation from microCT stacks of commercial biomaterials usable for bone grafting.
    Chappard D; Kün-Darbois JD; Guillaume B
    Micron; 2020 Jun; 133():102861. PubMed ID: 32146253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dependence of intertrabecular permeability on flow direction and anatomic site.
    Nauman EA; Fong KE; Keaveny TM
    Ann Biomed Eng; 1999; 27(4):517-24. PubMed ID: 10468236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.
    Widmer RP; Ferguson SJ
    J Biomech Eng; 2011 May; 133(5):051007. PubMed ID: 21599098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Convergence behavior of high-resolution finite element models of trabecular bone.
    Niebur GL; Yuen JC; Hsia AC; Keaveny TM
    J Biomech Eng; 1999 Dec; 121(6):629-35. PubMed ID: 10633264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical analysis of variability in ultrasound propagation properties induced by trabecular microstructure in cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):738-47. PubMed ID: 19406702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating structural properties of trabecular bone from gray-level low-resolution images.
    Tabor Z
    Med Eng Phys; 2007 Jan; 29(1):110-9. PubMed ID: 16510304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution three-dimensional-pQCT images can be an adequate basis for in-vivo microFE analysis of bone.
    Pistoia W; van Rietbergen B; Laib A; Rüegsegger P
    J Biomech Eng; 2001 Apr; 123(2):176-83. PubMed ID: 11340879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct perfusion measurements of cancellous bone anisotropic permeability.
    Kohles SS; Roberts JB; Upton ML; Wilson CG; Bonassar LJ; Schlichting AL
    J Biomech; 2001 Sep; 34(9):1197-202. PubMed ID: 11506790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.
    Rieger R; Auregan JC; Hoc T
    Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Equivalent Pore Channel Model for Fluid Flow in Rock Based on Microscale X-ray CT Imaging.
    Choi CS; Lee YK; Song JJ
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32521752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone.
    Liu XS; Sajda P; Saha PK; Wehrli FW; Guo XE
    J Bone Miner Res; 2006 Oct; 21(10):1608-17. PubMed ID: 16995816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.
    Li F; Li J; Xu G; Liu G; Kou H; Zhou L
    J Mech Behav Biomed Mater; 2015 Jun; 46():104-14. PubMed ID: 25778351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.