These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28462424)

  • 1. Evaluation of a Surrogate Contact Model in Force-Dependent Kinematic Simulations of Total Knee Replacement.
    Marra MA; Andersen MS; Damsgaard M; Koopman BFJM; Janssen D; Verdonschot N
    J Biomech Eng; 2017 Aug; 139(8):. PubMed ID: 28462424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty.
    Marra MA; Vanheule V; Fluit R; Koopman BH; Rasmussen J; Verdonschot N; Andersen MS
    J Biomech Eng; 2015 Feb; 137(2):020904. PubMed ID: 25429519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement.
    Smith CR; Vignos MF; Lenhart RL; Kaiser J; Thelen DG
    J Biomech Eng; 2016 Feb; 138(2):021017. PubMed ID: 26769446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model.
    Jung Y; Phan CB; Koo S
    J Biomech Eng; 2016 Feb; 138(2):021016. PubMed ID: 26720762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.
    Peng Y; Zhang Z; Gao Y; Chen Z; Xin H; Zhang Q; Fan X; Jin Z
    Med Eng Phys; 2018 Feb; 52():31-40. PubMed ID: 29269224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement.
    Shu L; Yamamoto K; Yao J; Saraswat P; Liu Y; Mitsuishi M; Sugita N
    J Biomech; 2018 Aug; 77():146-154. PubMed ID: 30031649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of medial and lateral contact force of the knee joint during normal and turning gait after total knee replacement.
    Purevsuren T; Dorj A; Kim K; Kim YH
    Proc Inst Mech Eng H; 2016 Apr; 230(4):288-97. PubMed ID: 26908641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromyography-Driven Forward Dynamics Simulation to Estimate In Vivo Joint Contact Forces During Normal, Smooth, and Bouncy Gaits.
    Razu SS; Guess TM
    J Biomech Eng; 2018 Jul; 140(7):0710121-8. PubMed ID: 29164228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.
    Hast MW; Piazza SJ
    J Biomech Eng; 2013 Feb; 135(2):021013. PubMed ID: 23445058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine tuning total knee replacement contact force prediction algorithms using blinded model validation.
    Lundberg HJ; Knowlton C; Wimmer MA
    J Biomech Eng; 2013 Feb; 135(2):021015. PubMed ID: 23445060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model.
    Ding Z; Nolte D; Kit Tsang C; Cleather DJ; Kedgley AE; Bull AM
    J Biomech Eng; 2016 Feb; 138(2):021018. PubMed ID: 26720641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ; Fernandez JW; Akbarshahi M; Walter JP; Fregly BJ; Pandy MG
    J Orthop Res; 2009 Oct; 27(10):1326-31. PubMed ID: 19396858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of patient, surgical, and implant design variation in total knee replacement performance.
    Fitzpatrick CK; Clary CW; Rullkoetter PJ
    J Biomech; 2012 Aug; 45(12):2092-102. PubMed ID: 22727219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials.
    Kia M; Stylianou AP; Guess TM
    Med Eng Phys; 2014 Mar; 36(3):335-44. PubMed ID: 24418154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surrogate modeling of deformable joint contact using artificial neural networks.
    Eskinazi I; Fregly BJ
    Med Eng Phys; 2015 Sep; 37(9):885-91. PubMed ID: 26220591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D active-passive response of human knee joint in gait is markedly altered when simulated as a planar 2D joint.
    Marouane H; Shirazi-Adl A; Adouni M
    Biomech Model Mechanobiol; 2017 Apr; 16(2):693-703. PubMed ID: 27913901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a subject-specific musculoskeletal modelling framework for load prediction in total knee arthroplasty.
    Chen Z; Zhang Z; Wang L; Li D; Zhang Y; Jin Z
    Med Eng Phys; 2016 Aug; 38(8):708-16. PubMed ID: 27245748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Knee Joint Contact Forces During Normal Walking Using Kinematic Inputs With a Long-Short Term Neural Network.
    Bennett HJ; Estler K; Valenzuela K; Weinhandl JT
    J Biomech Eng; 2024 Aug; 146(8):. PubMed ID: 38270972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of in vivo joint mechanics of an artificial knee implant using rigid multi-body dynamics with elastic contacts.
    Chen Z; Zhang X; Ardestani MM; Wang L; Liu Y; Lian Q; He J; Li D; Jin Z
    Proc Inst Mech Eng H; 2014 Jun; 228(6):564-575. PubMed ID: 24878735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional surrogate contact modeling for computationally efficient dynamic simulation of total knee replacements.
    Lin YC; Haftka RT; Queipo NV; Fregly BJ
    J Biomech Eng; 2009 Apr; 131(4):041010. PubMed ID: 19275439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.