These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28462824)

  • 21. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations.
    Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z
    Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Bayesian Approach for Coincidence Resolution in Microfluidic Impedance Cytometry.
    Caselli F; De Ninno A; Reale R; Businaro L; Bisegna P
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):340-349. PubMed ID: 32746004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics.
    Tirapu-Azpiroz J; Temiz Y; Delamarche E
    Biomed Microdevices; 2017 Oct; 19(4):95. PubMed ID: 29082438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a novel impedance cytometer design and its integration with lateral focusing by dielectrophoresis.
    Mernier G; Duqi E; Renaud P
    Lab Chip; 2012 Nov; 12(21):4344-9. PubMed ID: 22899298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Anal Chem; 2019 Dec; 91(23):15204-15212. PubMed ID: 31702127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical Investigation of a Novel Wiring Scheme Enabling Simple and Accurate Impedance Cytometry.
    Caselli F; Reale R; Nodargi NA; Bisegna P
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences.
    Sun T; Holmes D; Gawad S; Green NG; Morgan H
    Lab Chip; 2007 Aug; 7(8):1034-40. PubMed ID: 17653346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles.
    Zhang J; Yan S; Yuan D; Zhao Q; Tan SH; Nguyen NT; Li W
    Lab Chip; 2016 Oct; 16(20):3947-3956. PubMed ID: 27722618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supervised machine learning in microfluidic impedance flow cytometry for improved particle size determination.
    de Bruijn DS; Ten Eikelder HRA; Papadimitriou VA; Olthuis W; van den Berg A
    Cytometry A; 2023 Mar; 103(3):221-226. PubMed ID: 36908134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impedance spectroscopy and optical analysis of single biological cells and organisms in microsystems.
    Gawad S; Holmes D; Benazzi G; Renaud P; Morgan H
    Methods Mol Biol; 2010; 583():149-82. PubMed ID: 19763464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of low-voltage pulse parameters on electroporation and electrical lysis using a microfluidic device with interdigitated electrodes.
    Morshed BI; Shams M; Mussivand T
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):871-82. PubMed ID: 24557688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiplex immunoassays using virus-tethered gold microspheres by DC impedance-based flow cytometry.
    Rho J; Jang W; Hwang I; Lee D; Lee CH; Chung TD
    Biosens Bioelectron; 2018 Apr; 102():121-128. PubMed ID: 29128714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry.
    Honrado C; McGrath JS; Reale R; Bisegna P; Swami NS; Caselli F
    Anal Bioanal Chem; 2020 Jun; 412(16):3835-3845. PubMed ID: 32189012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Electrode Shape on Impedance of Single HeLa Cell: A COMSOL Simulation.
    Wang MH; Chang WH
    Biomed Res Int; 2015; 2015():871603. PubMed ID: 25961043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A portable battery powered microfluidic impedance cytometer with smartphone readout: towards personal health monitoring.
    Talukder N; Furniturewalla A; Le T; Chan M; Hirday S; Cao X; Xie P; Lin Z; Gholizadeh A; Orbine S; Javanmard M
    Biomed Microdevices; 2017 Jun; 19(2):36. PubMed ID: 28432532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An easy-fabricated and disposable polymer-film microfluidic impedance cytometer for cell sensing.
    Zhu S; Zhang X; Chen M; Tang D; Han Y; Xiang N; Ni Z
    Anal Chim Acta; 2021 Aug; 1175():338759. PubMed ID: 34330437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence.
    Joo S; Kim KH; Kim HC; Chung TD
    Biosens Bioelectron; 2010 Feb; 25(6):1509-15. PubMed ID: 20004091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors.
    Wang L; Wang H; Wang L; Mitchelson K; Yu Z; Cheng J
    Biosens Bioelectron; 2008 Sep; 24(1):14-21. PubMed ID: 18511255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A cell electrofusion microfluidic chip using discrete coplanar vertical sidewall microelectrodes.
    Hu N; Yang J; Qian S; Zhang X; Joo SW; Zheng X
    Electrophoresis; 2012 Jul; 33(13):1980-6. PubMed ID: 22806463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes.
    Kim KB; Chun H; Kim HC; Chung TD
    Electrophoresis; 2009 May; 30(9):1464-9. PubMed ID: 19340832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.