BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28462843)

  • 21. Bisubstrate analogues as glycosyltransferase inhibitors.
    Izumi M; Yuasa H; Hashimoto H
    Curr Top Med Chem; 2009; 9(1):87-105. PubMed ID: 19199998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of active-site inhibitors of MurG using a generalizable, high-throughput glycosyltransferase screen.
    Helm JS; Hu Y; Chen L; Gross B; Walker S
    J Am Chem Soc; 2003 Sep; 125(37):11168-9. PubMed ID: 16220917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular dynamics simulations of glycosyltransferase LgtC.
    Snajdrová L; Kulhánek P; Imberty A; Koca J
    Carbohydr Res; 2004 Apr; 339(5):995-1006. PubMed ID: 15010307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of selective inhibitors for the glycosyltransferase MurG via high-throughput screening.
    Hu Y; Helm JS; Chen L; Ginsberg C; Gross B; Kraybill B; Tiyanont K; Fang X; Wu T; Walker S
    Chem Biol; 2004 May; 11(5):703-11. PubMed ID: 15157881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design, synthesis and biological evaluation of iminosugar-based glycosyltransferase inhibitors.
    Compain P; Martin OR
    Curr Top Med Chem; 2003; 3(5):541-60. PubMed ID: 12570865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-step synthesis of novel glycosyltransferase inhibitors.
    Evitt A; Tedaldi LM; Wagner GK
    Chem Commun (Camb); 2012 Dec; 48(97):11856-8. PubMed ID: 23125983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a distinct, cryptic heparosan synthase from Pasteurella multocida types A, D, and F.
    Deangelis PL; White CL
    J Bacteriol; 2004 Dec; 186(24):8529-32. PubMed ID: 15576804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Snapshots of α-1,3-Galactosyltransferase with Native Substrates: Insight into the Catalytic Mechanism of Retaining Glycosyltransferases.
    Albesa-Jové D; Sainz-Polo MÁ; Marina A; Guerin ME
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):14853-14857. PubMed ID: 28960760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting the Bacterial Transglycosylase: Antibiotic Development from a Structural Perspective.
    Chen X; Wong CH; Ma C
    ACS Infect Dis; 2019 Sep; 5(9):1493-1504. PubMed ID: 31283163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure/function analysis of Pasteurella multocida heparosan synthases: toward defining enzyme specificity and engineering novel catalysts.
    Otto NJ; Green DE; Masuko S; Mayer A; Tanner ME; Linhardt RJ; DeAngelis PL
    J Biol Chem; 2012 Mar; 287(10):7203-12. PubMed ID: 22235128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. QM/MM Studies Reveal How Substrate-Substrate and Enzyme-Substrate Interactions Modulate Retaining Glycosyltransferases Catalysis and Mechanism.
    Gómez H; Mendoza F; Lluch JM; Masgrau L
    Adv Protein Chem Struct Biol; 2015; 100():225-54. PubMed ID: 26415846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retaining glycosyltransferase mechanism studied by QM/MM methods: lipopolysaccharyl-α-1,4-galactosyltransferase C transfers α-galactose via an oxocarbenium ion-like transition state.
    Gómez H; Polyak I; Thiel W; Lluch JM; Masgrau L
    J Am Chem Soc; 2012 Mar; 134(10):4743-52. PubMed ID: 22352786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic studies of a retaining alpha-galactosyltransferase from Neisseria meningitidis.
    Ly HD; Lougheed B; Wakarchuk WW; Withers SG
    Biochemistry; 2002 Apr; 41(16):5075-85. PubMed ID: 11955055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism-based probing, characterization, and inhibitor design of glycosidases and glycosyltransferases.
    Hinou H; Nishimura S
    Curr Top Med Chem; 2009; 9(1):106-16. PubMed ID: 19199999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural insights showing how arginine is able to be glycosylated by pathogenic effector proteins.
    Park JB; Yoo Y; Cho HS
    BMB Rep; 2018 Dec; 51(12):609-610. PubMed ID: 30463645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of bacterial protein O-oligosaccharyltransferases and their glycoprotein substrates.
    Schulz BL; Jen FE; Power PM; Jones CE; Fox KL; Ku SC; Blanchfield JT; Jennings MP
    PLoS One; 2013; 8(5):e62768. PubMed ID: 23658772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of galactosyltransferases by a novel class of donor analogues.
    Descroix K; Pesnot T; Yoshimura Y; Gehrke SS; Wakarchuk W; Palcic MM; Wagner GK
    J Med Chem; 2012 Mar; 55(5):2015-24. PubMed ID: 22356319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural analysis of lipopolysaccharide produced by Heddleston serovars 10, 11, 12 and 15 and the identification of a new Pasteurella multocida lipopolysaccharide outer core biosynthesis locus, L6.
    Harper M; St Michael F; John M; Steen J; van Dorsten L; Parnas H; Vinogradov E; Adler B; Cox AD; Boyce JD
    Glycobiology; 2014 Jul; 24(7):649-59. PubMed ID: 24740556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1H NMR characterization of the solution active site structure of substrate-bound, cyanide-inhibited heme oxygenase from Neisseria meningitidis: comparison to crystal structures.
    Liu Y; Zhang X; Yoshida T; La Mar GN
    Biochemistry; 2004 Aug; 43(31):10112-26. PubMed ID: 15287739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico approach towards identification of potential inhibitors of Helicobacter pylori DapE.
    Mandal RS; Das S
    J Biomol Struct Dyn; 2015; 33(7):1460-73. PubMed ID: 25204745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.