BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28462872)

  • 1. Interaction of ethidium and tetraphenylphosphonium cations with Salmonella enterica cells.
    Mikalayeva V; Sakalauskaitė S; Daugelavičius R
    Medicina (Kaunas); 2017; 53(2):122-130. PubMed ID: 28462872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethidium Binding to
    Sakalauskaitė S; Mikalayeva V; Daugelavičius R
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34205065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the activity of RND-type multidrug efflux pumps in Pseudomonas aeruginosa using tetraphenylphosphonium ions.
    Daugelavicius R; Buivydas A; Sencilo A; Bamford DH
    Int J Antimicrob Agents; 2010 Sep; 36(3):234-8. PubMed ID: 20488669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the efficiency of synthesized efflux pump inhibitors on Salmonella enterica ser. typhimurium cells.
    Sutkuvienė S; Mikalayeva V; Pavan S; Berti F; Daugelavičius R
    Chem Biol Drug Des; 2013 Oct; 82(4):438-45. PubMed ID: 23763959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode of the Interaction of Efflux Inhibitor Phenylalanyl-arginyl-β-naphtylamide with Bacterial Cells.
    Sakalauskaitė S; Mikalayeva V; Sutkuvienė S; Daugelavičius R
    Biomedicines; 2024 Jun; 12(6):. PubMed ID: 38927531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans.
    Prasad R; Höfer M
    Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium and tetraphenylphosphonium ion-selective electrodes for monitoring changes in the permeability of bacterial outer and cytoplasmic membranes.
    Yasuda K; Ohmizo C; Katsu T
    J Microbiol Methods; 2003 Jul; 54(1):111-5. PubMed ID: 12732428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some characteristics of tetraphenylphosphonium uptake into Saccharomyces cerevisiae.
    Boxman AW; Barts PW; Borst-Pauwels GW
    Biochim Biophys Acta; 1982 Mar; 686(1):13-8. PubMed ID: 7039677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Evaluation of Mitochondrial Membrane Potential Using Fluorescent Dyes or a Membrane-Permeable Cation (TPP
    Teodoro JS; Machado IF; Castela AC; Rolo AP; Palmeira CM
    Methods Mol Biol; 2020; 2184():197-213. PubMed ID: 32808227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phosphonium ion efflux system of Escherichia coli: relationship to the ethidium efflux system and energetic studies.
    Midgley M
    J Gen Microbiol; 1986 Nov; 132(11):3187-93. PubMed ID: 3305782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of the mitochondrial and plasma membrane potentials in human fibroblasts by tetraphenylphosphonium ion distribution.
    Rugolo M; Lenaz G
    J Bioenerg Biomembr; 1987 Dec; 19(6):705-18. PubMed ID: 3693347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of P-glycoprotein in intestinal transport versus the BBB transport of tetraphenylphosphonium.
    Swed A; Eyal S; Madar I; Zohar-Kontante H; Weiss L; Hoffman A
    Mol Pharm; 2009; 6(6):1883-90. PubMed ID: 19722701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric field-induced effects on yeast cell wall permeabilization.
    Stirke A; Zimkus A; Ramanaviciene A; Balevicius S; Zurauskiene N; Saulis G; Chaustova L; Stankevic V; Ramanavicius A
    Bioelectromagnetics; 2014 Feb; 35(2):136-44. PubMed ID: 24203648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible energization of K+ accumulation into metabolizing yeast by the protonmotive force. Binding correction to be applied in the calculation of the yeast membrane potential from tetraphenylphosphonium distribution.
    Boxman AW; Dobbelmann J; Borst-Pauwels GW
    Biochim Biophys Acta; 1984 Apr; 772(1):51-7. PubMed ID: 6370307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring Efflux and Permeability in Mycobacteria.
    Rodrigues L; Aínsa JA; Viveiros M
    Methods Mol Biol; 2021; 2314():231-245. PubMed ID: 34235655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cation effluxes associated with the uptake of TPP+, TPA+, and TPMP+ by Neurospora: evidence for a predominantly electroneutral influx process.
    Slayman CL; Kuroda H; Ballarin-Denti A
    Biochim Biophys Acta; 1994 Feb; 1190(1):57-71. PubMed ID: 8110821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations.
    Rottenberg H
    J Membr Biol; 1984; 81(2):127-38. PubMed ID: 6492133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of Real-Time Assays To Distinguish Multidrug Efflux Pump-Inhibiting and Outer Membrane-Destabilizing Activities in Escherichia coli.
    Misra R; Morrison KD; Cho HJ; Khuu T
    J Bacteriol; 2015 Aug; 197(15):2479-88. PubMed ID: 25962916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring Mitochondrial Membrane Potential with a Tetraphenylphosphonium-Selective Electrode.
    Moreno AJ; Santos DL; Magalhães-Novais S; Oliveira PJ
    Curr Protoc Toxicol; 2015 Aug; 65():25.5.1-25.5.16. PubMed ID: 26250398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a lipophilic cation to monitor electrical membrane potential in the intact rat lens.
    Cheng Q; Lichtstein D; Russell P; Zigler JS
    Invest Ophthalmol Vis Sci; 2000 Feb; 41(2):482-7. PubMed ID: 10670479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.