These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28462927)

  • 1. De novo evolved interference competition promotes the spread of biofilm defectors.
    Martin M; Dragoš A; Hölscher T; Maróti G; Bálint B; Westermann M; Kovács ÁT
    Nat Commun; 2017 May; 8():15127. PubMed ID: 28462927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolved Biofilm: Review on the Experimental Evolution Studies of Bacillus subtilis Pellicles.
    Kovács ÁT; Dragoš A
    J Mol Biol; 2019 Nov; 431(23):4749-4759. PubMed ID: 30769118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms.
    Dragoš A; Lakshmanan N; Martin M; Horváth B; Maróti G; Falcón García C; Lieleg O; Kovács ÁT
    FEMS Microbiol Ecol; 2017 Dec; 93(12):. PubMed ID: 29126191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms.
    van Gestel J; Weissing FJ; Kuipers OP; Kovács AT
    ISME J; 2014 Oct; 8(10):2069-79. PubMed ID: 24694715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm-associated toxin and extracellular protease cooperatively suppress competitors in Bacillus subtilis biofilms.
    Kobayashi K; Ikemoto Y
    PLoS Genet; 2019 Oct; 15(10):e1008232. PubMed ID: 31622331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models.
    Madsen JS; Lin YC; Squyres GR; Price-Whelan A; de Santiago Torio A; Song A; Cornell WC; Sørensen SJ; Xavier JB; Dietrich LE
    Appl Environ Microbiol; 2015 Dec; 81(24):8414-26. PubMed ID: 26431965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. γ-PGA Hydrolases of Phage Origin in Bacillus subtilis and Other Microbial Genomes.
    Mamberti S; Prati P; Cremaschi P; Seppi C; Morelli CF; Galizzi A; Fabbi M; Calvio C
    PLoS One; 2015; 10(7):e0130810. PubMed ID: 26158264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic-di-GMP signalling meets extracellular polysaccharide synthesis in Bacillus subtilis.
    Kampf J; Stülke J
    Environ Microbiol Rep; 2017 Jun; 9(3):182-185. PubMed ID: 28296273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis.
    Leiman SA; Arboleda LC; Spina JS; McLoon AL
    BMC Microbiol; 2014 Nov; 14():301. PubMed ID: 25433524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Division of Labor during Biofilm Matrix Production.
    Dragoš A; Kiesewalter H; Martin M; Hsu CY; Hartmann R; Wechsler T; Eriksen C; Brix S; Drescher K; Stanley-Wall N; Kümmerli R; Kovács ÁT
    Curr Biol; 2018 Jun; 28(12):1903-1913.e5. PubMed ID: 29887307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A master regulator for biofilm formation by Bacillus subtilis.
    Kearns DB; Chu F; Branda SS; Kolter R; Losick R
    Mol Microbiol; 2005 Feb; 55(3):739-49. PubMed ID: 15661000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targets of the master regulator of biofilm formation in Bacillus subtilis.
    Chu F; Kearns DB; Branda SS; Kolter R; Losick R
    Mol Microbiol; 2006 Feb; 59(4):1216-28. PubMed ID: 16430695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacillus subtilis biofilm formation and social interactions.
    Arnaouteli S; Bamford NC; Stanley-Wall NR; Kovács ÁT
    Nat Rev Microbiol; 2021 Sep; 19(9):600-614. PubMed ID: 33824496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation.
    Uhlich GA; Rogers DP; Mosier DA
    Foodborne Pathog Dis; 2010 Aug; 7(8):935-43. PubMed ID: 20367070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cheaters shape the evolution of phenotypic heterogeneity in Bacillus subtilis biofilms.
    Martin M; Dragoš A; Otto SB; Schäfer D; Brix S; Maróti G; Kovács ÁT
    ISME J; 2020 Sep; 14(9):2302-2312. PubMed ID: 32483306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance.
    Ren D; Bedzyk LA; Setlow P; Thomas SM; Ye RW; Wood TK
    Biotechnol Bioeng; 2004 May; 86(3):344-64. PubMed ID: 15083514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A major protein component of the Bacillus subtilis biofilm matrix.
    Branda SS; Chu F; Kearns DB; Losick R; Kolter R
    Mol Microbiol; 2006 Feb; 59(4):1229-38. PubMed ID: 16430696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Division of labour during Bacillus subtilis biofilm formation.
    Kearns DB
    Mol Microbiol; 2008 Jan; 67(2):229-31. PubMed ID: 18086186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome DNA fragmentation and excretion caused by defective prophage gene expression in the early-exponential-phase culture of Bacillus subtilis.
    Shingaki R; Kasahara Y; Inoue T; Kokeguchi S; Fukui K
    Can J Microbiol; 2003 May; 49(5):313-25. PubMed ID: 12897825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.
    Hsueh YH; Ke WJ; Hsieh CT; Lin KS; Tzou DY; Chiang CL
    PLoS One; 2015; 10(6):e0128457. PubMed ID: 26039692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.