BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28462935)

  • 1. Effect of alkaline preswelling on the structure of lignins from Eucalyptus.
    Chen WJ; Yang S; Zhang Y; Wang YY; Yuan TQ; Sun RC
    Sci Rep; 2017 May; 7():45752. PubMed ID: 28462935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Features of Alkaline Dioxane Lignin and Residual Lignin from Eucalyptus grandis × E. urophylla.
    Chen WJ; Zhao BC; Cao XF; Yuan TQ; Shi Q; Wang SF; Sun RC
    J Agric Food Chem; 2019 Jan; 67(3):968-974. PubMed ID: 30580517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of lignins from Eucalyptus tereticornis (12ABL).
    Zhang A; Lu F; Liu C; Sun RC
    J Agric Food Chem; 2010 Nov; 58(21):11287-93. PubMed ID: 20954709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural elucidation of Eucalyptus lignin and its dynamic changes in the cell walls during an integrated process of ionic liquids and successive alkali treatments.
    Li HY; Wang CZ; Chen X; Cao XF; Sun SN; Sun RC
    Bioresour Technol; 2016 Dec; 222():175-181. PubMed ID: 27718400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization of lignin in heartwood, sapwood, and bark of eucalyptus.
    Xiao MZ; Chen WJ; Hong S; Pang B; Cao XF; Wang YY; Yuan TQ; Sun RC
    Int J Biol Macromol; 2019 Oct; 138():519-527. PubMed ID: 31348970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural elucidation of lignin polymers of Eucalyptus chips during organosolv pretreatment and extended delignification.
    Wen JL; Sun SL; Yuan TQ; Xu F; Sun RC
    J Agric Food Chem; 2013 Nov; 61(46):11067-75. PubMed ID: 24168231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated hot-compressed water and laccase-mediator treatments of Eucalyptus grandis fibers: structural changes of fiber and lignin.
    Wu JQ; Wen JL; Yuan TQ; Sun RC
    J Agric Food Chem; 2015 Feb; 63(6):1763-72. PubMed ID: 25639522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative evaluation of three lignin isolation protocols for various wood species.
    Guerra A; Filpponen I; Lucia LA; Argyropoulos DS
    J Agric Food Chem; 2006 Dec; 54(26):9696-705. PubMed ID: 17177489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of enzymatic digestibility of Eucalyptus grandis pretreated by NaOH catalyzed steam explosion.
    Park JY; Kang M; Kim JS; Lee JP; Choi WI; Lee JS
    Bioresour Technol; 2012 Nov; 123():707-12. PubMed ID: 22939603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the structure and distribution changes of Eucalyptus lignin during the hydrothermal and alkaline pretreatments.
    Wang C; Li H; Li M; Bian J; Sun R
    Sci Rep; 2017 Apr; 7(1):593. PubMed ID: 28377625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the alkali lignins involving the formation and transformation of arylglycerols and enol ethers.
    Zhao C; Li S; Zhang H; Yue F; Lu F
    Int J Biol Macromol; 2020 Jun; 152():411-417. PubMed ID: 32097737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Condensed lignin structures and re-localization achieved at high severities in autohydrolysis of Eucalyptus globulus wood and their relationship with cellulose accessibility.
    Araya F; Troncoso E; Mendonça RT; Freer J
    Biotechnol Bioeng; 2015 Sep; 112(9):1783-91. PubMed ID: 25851426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of
    Penín L; Lange H; Santos V; Crestini C; Parajó JC
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31968654
    [No Abstract]   [Full Text] [Related]  

  • 14. Structural elucidation of sorghum lignins from an integrated biorefinery process based on hydrothermal and alkaline treatments.
    Sun SL; Wen JL; Ma MG; Sun RC
    J Agric Food Chem; 2014 Aug; 62(32):8120-8. PubMed ID: 25090032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural variation of eucalyptus lignin in a combination of hydrothermal and alkali treatments.
    Sun SN; Li HY; Cao XF; Xu F; Sun RC
    Bioresour Technol; 2015 Jan; 176():296-9. PubMed ID: 25435069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding.
    Pereira A; Hoeger IC; Ferrer A; Rencoret J; Del Rio JC; Kruus K; Rahikainen J; Kellock M; Gutiérrez A; Rojas OJ
    Biomacromolecules; 2017 Apr; 18(4):1322-1332. PubMed ID: 28287708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of aluminum chloride-catalyzed hydrothermal pretreatment on the structural characteristics of lignin and enzymatic hydrolysis.
    Shen XJ; Wang B; Huang PL; Wen JL; Sun RC
    Bioresour Technol; 2016 Apr; 206():57-64. PubMed ID: 26845220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks.
    Gutiérrez A; Rencoret J; Cadena EM; Rico A; Barth D; del Río JC; Martínez AT
    Bioresour Technol; 2012 Sep; 119():114-22. PubMed ID: 22728191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification.
    Romaní A; Garrote G; López F; Parajó JC
    Bioresour Technol; 2011 May; 102(10):5896-904. PubMed ID: 21392966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of arylglycerol-beta-aryl ether linkages in enzymatic mild acidolysis lignins (EMAL): comparison of DFRC/(31)P NMR with thioacidolysis.
    Guerra A; Norambuena M; Freer J; Argyropoulos DS
    J Nat Prod; 2008 May; 71(5):836-41. PubMed ID: 18419155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.