These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28463005)

  • 1. Mechanism of CO
    Wang Y; Gao H
    J Phys Chem B; 2017 May; 121(20):5238-5246. PubMed ID: 28463005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple mechanisms of CH
    Yang H; Wang H; Wei L; Yang Y; Li YW; Wen XD; Jiao H
    Phys Chem Chem Phys; 2021 Dec; 23(46):26392-26400. PubMed ID: 34792065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ NAP-XPS spectroscopy during methane dry reforming on ZrO
    Rameshan C; Li H; Anic K; Roiaz M; Pramhaas V; Rameshan R; Blume R; Hävecker M; Knudsen J; Knop-Gericke A; Rupprechter G
    J Phys Condens Matter; 2018 Jul; 30(26):264007. PubMed ID: 29786619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO2 reforming of CH4 on Ni(111): a density functional theory calculation.
    Wang SG; Cao DB; Li YW; Wang J; Jiao H
    J Phys Chem B; 2006 May; 110(20):9976-83. PubMed ID: 16706455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the Reaction Mechanism in Model Biogas Reforming by In Situ Transient and Steady-State DRIFTS Measurements.
    Bobadilla LF; Garcilaso V; Centeno MA; Odriozola JA
    ChemSusChem; 2017 Mar; 10(6):1193-1201. PubMed ID: 27910231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Ag Metal Dispersion on the Catalyzed Reduction of CO
    Duan R; Qin W; Xiao X; Ma B; Zheng Z
    ACS Omega; 2022 Sep; 7(38):34213-34221. PubMed ID: 36188302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic performance of activated carbon supported cobalt catalyst for CO2 reforming of CH4.
    Zhang G; Su A; Du Y; Qu J; Xu Y
    J Colloid Interface Sci; 2014 Nov; 433():149-155. PubMed ID: 25127295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [In-situ DRIFTS study of coupling partial oxidation of methane and carbon dioxide reforming].
    Ji HB; Xu JH; Xie JF; Chen QL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1246-50. PubMed ID: 18800697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ni@ZrO
    Lim ZY; Tu J; Xu Y; Chen B
    J Colloid Interface Sci; 2021 May; 590():641-651. PubMed ID: 33582366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient electrochemical reforming of CH
    Lu J; Zhu C; Pan C; Lin W; Lemmon JP; Chen F; Li C; Xie K
    Sci Adv; 2018 Mar; 4(3):eaar5100. PubMed ID: 29670946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Insights into Catalytic Ethanol Steam Reforming Using Isotope-Labeled Reactants.
    Crowley S; Castaldi MJ
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10650-5. PubMed ID: 27487203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcalorimetric and infrared studies of ethanol and acetaldehyde adsorption to investigate the ethanol steam reforming on supported cobalt catalysts.
    Guil JM; Homs N; Llorca J; Ramírez de la Piscina P
    J Phys Chem B; 2005 Jun; 109(21):10813-9. PubMed ID: 16852315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sol-gel autocombustion as a route towards highly CO
    Ploner K; Delir Kheyrollahi Nezhad P; Gili A; Kamutzki F; Gurlo A; Doran A; Cao P; Heggen M; Köwitsch N; Armbrüster M; Watschinger M; Klötzer B; Penner S
    Mater Chem Front; 2021 Jun; 5(13):5093-5105. PubMed ID: 34262777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dry Reforming of CH
    Cheng F; Duan X; Xie K
    Angew Chem Int Ed Engl; 2021 Aug; 60(34):18792-18799. PubMed ID: 34101335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.
    Buelens LC; Galvita VV; Poelman H; Detavernier C; Marin GB
    Science; 2016 Oct; 354(6311):449-452. PubMed ID: 27738013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical and Mass Spectrometric Measurements of the CH
    Li H; Zhou Y; Donnelly VM
    J Phys Chem A; 2020 Sep; 124(36):7271-7282. PubMed ID: 32791834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ FT-IR Spectroscopic Study of CO
    Köck EM; Kogler M; Bielz T; Klötzer B; Penner S
    J Phys Chem C Nanomater Interfaces; 2013 Aug; 117(34):17666-17673. PubMed ID: 24009780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insight into effect of doping of Ni on CO
    Ou LH
    J Mol Model; 2016 Oct; 22(10):246. PubMed ID: 27678451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of a ZrO
    Wang Y; Gao H
    J Phys Chem B; 2017 Mar; 121(9):2132-2141. PubMed ID: 28191952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of CO
    Manae MA; Dheer L; Rai S; Shetty S; Waghmare UV
    Phys Chem Chem Phys; 2022 Jan; 24(3):1415-1423. PubMed ID: 34982078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.