These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28463203)

  • 1. EEG-Based User Reaction Time Estimation Using Riemannian Geometry Features.
    Wu D; Lance BJ; Lawhern VJ; Gordon S; Jung TP; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2157-2168. PubMed ID: 28463203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods.
    Majidov I; Whangbo T
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiclass brain-computer interface classification by Riemannian geometry.
    Barachant A; Bonnet S; Congedo M; Jutten C
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):920-8. PubMed ID: 22010143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilinear Regularized Locality Preserving Learning on Riemannian Graph for Motor Imagery BCI.
    Xie X; Yu ZL; Gu Z; Zhang J; Cen L; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):698-708. PubMed ID: 29522413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG emotion recognition based on enhanced SPD matrix and manifold dimensionality reduction.
    Gao Y; Sun X; Meng M; Zhang Y
    Comput Biol Med; 2022 Jul; 146():105606. PubMed ID: 35588679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riemannian distance based channel selection and feature extraction combining discriminative time-frequency bands and Riemannian tangent space for MI-BCIs.
    Qu T; Jin J; Xu R; Wang X; Cichocki A
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36126643
    [No Abstract]   [Full Text] [Related]  

  • 8. Weighted spatial based geometric scheme as an efficient algorithm for analyzing single-trial EEGS to improve cue-based BCI classification.
    Alimardani F; Boostani R; Blankertz B
    Neural Netw; 2017 Aug; 92():69-76. PubMed ID: 28385624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression.
    Chu Y; Zhao X; Zou Y; Xu W; Song G; Han J; Zhao Y
    J Neural Eng; 2020 Aug; 17(4):046029. PubMed ID: 32780720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of Riemannian Distances and Divergences, Applied to SSVEP-based BCI.
    Chevallier S; Kalunga EK; Barthélemy Q; Monacelli E
    Neuroinformatics; 2021 Jan; 19(1):93-106. PubMed ID: 32562187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds.
    Jiang D; Ma Y; Wang Y
    Comput Methods Programs Biomed; 2019 Sep; 178():19-30. PubMed ID: 31416548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design.
    Huan NJ; Palaniappan R
    J Neural Eng; 2004 Sep; 1(3):142-50. PubMed ID: 15876633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tangent space spatial filters for interpretable and efficient Riemannian classification.
    Xu J; Grosse-Wentrup M; Jayaram V
    J Neural Eng; 2020 May; 17(2):026043. PubMed ID: 32224508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Riemannian Approaches in Brain-Computer Interfaces: A Review.
    Yger F; Berar M; Lotte F
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1753-1762. PubMed ID: 27845666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attention-level transitory response: a novel hybrid BCI approach.
    Diez PF; Garcés Correa A; Orosco L; Laciar E; Mut V
    J Neural Eng; 2015 Oct; 12(5):056007. PubMed ID: 26268353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Riemannian Geometry Approach to Reduced and Discriminative Covariance Estimation in Brain Computer Interfaces.
    Kalaganis FP; Laskaris NA; Chatzilari E; Nikolopoulos S; Kompatsiaris I
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):245-255. PubMed ID: 30998456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrastive fine-grained domain adaptation network for EEG-based vigilance estimation.
    Wang K; Wei W; Yi W; Qiu S; He H; Xu M; Ming D
    Neural Netw; 2024 Nov; 179():106617. PubMed ID: 39180976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer Learning: A Riemannian Geometry Framework With Applications to Brain-Computer Interfaces.
    Zanini P; Congedo M; Jutten C; Said S; Berthoumieu Y
    IEEE Trans Biomed Eng; 2018 May; 65(5):1107-1116. PubMed ID: 28841546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.