These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 28463207)
1. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques. Miao F; Fu N; Zhang YT; Ding XR; Hong X; He Q; Li Y IEEE J Biomed Health Inform; 2017 Nov; 21(6):1730-1740. PubMed ID: 28463207 [TBL] [Abstract][Full Text] [Related]
2. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio. Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147 [TBL] [Abstract][Full Text] [Related]
3. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy. Lin WH; Wang H; Samuel OW; Liu G; Huang Z; Li G Physiol Meas; 2018 Feb; 39(2):025005. PubMed ID: 29319536 [TBL] [Abstract][Full Text] [Related]
4. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches. Khalid SG; Zhang J; Chen F; Zheng D J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819 [TBL] [Abstract][Full Text] [Related]
5. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time. Li Y; Wang Z; Zhang L; Yang X; Song J Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801 [TBL] [Abstract][Full Text] [Related]
6. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates. Feng J; Huang Z; Zhou C; Ye X Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173 [TBL] [Abstract][Full Text] [Related]
8. A Non-Invasive Continuous Blood Pressure Estimation Approach Based on Machine Learning. Chen S; Ji Z; Wu H; Xu Y Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174357 [TBL] [Abstract][Full Text] [Related]
9. A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals. Sharifi I; Goudarzi S; Khodabakhshi MB Artif Intell Med; 2019 Jun; 97():143-151. PubMed ID: 30587391 [TBL] [Abstract][Full Text] [Related]
10. CiGNN: A Causality-Informed and Graph Neural Network Based Framework for Cuffless Continuous Blood Pressure Estimation. Liu L; Lu H; Whelan M; Chen Y; Ding X IEEE J Biomed Health Inform; 2024 May; 28(5):2674-2686. PubMed ID: 38478458 [TBL] [Abstract][Full Text] [Related]
11. A Chair-Based Unobtrusive Cuffless Blood Pressure Monitoring System Based on Pulse Arrival Time. Tang Z; Tamura T; Sekine M; Huang M; Chen W; Yoshida M; Sakatani K; Kobayashi H; Kanaya S IEEE J Biomed Health Inform; 2017 Sep; 21(5):1194-1205. PubMed ID: 28113527 [TBL] [Abstract][Full Text] [Related]
12. Multi-Sensor Fusion Approach for Cuff-Less Blood Pressure Measurement. Miao F; Liu ZD; Liu JK; Wen B; He QY; Li Y IEEE J Biomed Health Inform; 2020 Jan; 24(1):79-91. PubMed ID: 30892255 [TBL] [Abstract][Full Text] [Related]
13. Noninvasive cuffless blood pressure estimation using pulse transit time, Womersley number, and photoplethysmogram intensity ratio. Thambiraj G; Gandhi U; Devanand V; Mangalanathan U Physiol Meas; 2019 Jul; 40(7):075001. PubMed ID: 31051486 [TBL] [Abstract][Full Text] [Related]
14. Cuffless blood-pressure estimation method using a heart-rate variability-derived parameter. Chen Y; Shi S; Liu YK; Huang SL; Ma T Physiol Meas; 2018 Sep; 39(9):095002. PubMed ID: 30089101 [TBL] [Abstract][Full Text] [Related]
15. Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation. Wan-Hua Lin ; Hui Wang ; Samuel OW; Guanglin Li Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():738-741. PubMed ID: 29059978 [TBL] [Abstract][Full Text] [Related]
16. Causal inference based cuffless blood pressure estimation: A pilot study. Liu L; Zhang YT; Wang W; Chen Y; Ding X Comput Biol Med; 2023 Jun; 159():106900. PubMed ID: 37087777 [TBL] [Abstract][Full Text] [Related]
17. Noninvasive Cuffless Blood Pressure Estimation With Dendritic Neural Regression. Ji J; Dong M; Lin Q; Tan KC IEEE Trans Cybern; 2023 Jul; 53(7):4162-4174. PubMed ID: 35113792 [TBL] [Abstract][Full Text] [Related]
19. Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation. Ding XR; Zhang YT Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():398-401. PubMed ID: 26736283 [TBL] [Abstract][Full Text] [Related]
20. Bayesian Model Averaging for Improving the Accuracy of Cuffless Blood Pressure Estimation. Shen Z; Liu L; Ding X Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3981-3984. PubMed ID: 36086255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]