These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28463486)

  • 21. Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode.
    Hamada H
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanocavity-Mediated Purcell Enhancement of Er in TiO
    Ji C; Solomon MT; Grant GD; Tanaka K; Hua M; Wen J; Seth SK; Horn CP; Masiulionis I; Singh MK; Sullivan SE; Heremans FJ; Awschalom DD; Guha S; Dibos AM
    ACS Nano; 2024 Apr; 18(14):9929-9941. PubMed ID: 38533847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Making and Breaking of Lead Halide Perovskites.
    Manser JS; Saidaminov MI; Christians JA; Bakr OM; Kamat PV
    Acc Chem Res; 2016 Feb; 49(2):330-8. PubMed ID: 26789596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vertically Emitting Indium Phosphide Nanowire Lasers.
    Xu WZ; Ren FF; Jevtics D; Hurtado A; Li L; Gao Q; Ye J; Wang F; Guilhabert B; Fu L; Lu H; Zhang R; Tan HH; Dawson MD; Jagadish C
    Nano Lett; 2018 Jun; 18(6):3414-3420. PubMed ID: 29781625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays.
    Kornienko N; Gibson NA; Zhang H; Eaton SW; Yu Y; Aloni S; Leone SR; Yang P
    ACS Nano; 2016 May; 10(5):5525-35. PubMed ID: 27124203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition.
    Cansizoglu MF; Engelken R; Seo HW; Karabacak T
    ACS Nano; 2010 Feb; 4(2):733-40. PubMed ID: 20131854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast, direct, low-cost route to scalable, conductive, and multipurpose poly(3,4-ethylenedixoythiophene)-coated plastic electrodes.
    Sydam R; Kokal RK; Deepa M
    Chemphyschem; 2015 Apr; 16(5):1042-51. PubMed ID: 25690903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unconventional zigzag indium phosphide single-crystalline and twinned nanowires.
    Shen G; Bando Y; Liu B; Tang C; Golberg D
    J Phys Chem B; 2006 Oct; 110(41):20129-32. PubMed ID: 17034187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.
    Gao Y; Asadirad M; Yao Y; Dutta P; Galstyan E; Shervin S; Lee KH; Pouladi S; Sun S; Li Y; Rathi M; Ryou JH; Selvamanickam V
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29565-29572. PubMed ID: 27734670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Indium phosphide nanowires and their applications in optoelectronic devices.
    Zafar F; Iqbal A
    Proc Math Phys Eng Sci; 2016 Mar; 472(2187):20150804. PubMed ID: 27118920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures.
    Ahnood A; Zhou H; Suzuki Y; Sliz R; Fabritius T; Nathan A; Amaratunga GA
    Nanoscale Res Lett; 2015 Dec; 10(1):486. PubMed ID: 26676997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adjustable optical response of amorphous silicon nanowires integrated with thin films.
    Dhindsa N; Walia J; Pathirane M; Khodadad I; Wong WS; Saini SS
    Nanotechnology; 2016 Apr; 27(14):145703. PubMed ID: 26906427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution-processed zinc phosphide (α-Zn3P2) colloidal semiconducting nanocrystals for thin film photovoltaic applications.
    Luber EJ; Mobarok MH; Buriak JM
    ACS Nano; 2013 Sep; 7(9):8136-46. PubMed ID: 23952612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient light absorption with integrated nanopillar/nanowell arrays for three-dimensional thin-film photovoltaic applications.
    Lin Q; Hua B; Leung SF; Duan X; Fan Z
    ACS Nano; 2013 Mar; 7(3):2725-32. PubMed ID: 23397989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface Morphology and Electrical Properties of Cu
    Thürmer K; Schneider C; Stavila V; Friddle RW; Léonard F; Fischer RA; Allendorf MD; Talin AA
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39400-39410. PubMed ID: 30354047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of Competing Thermodynamics and Kinetics in Vapor Phase Thin-Film Growth of Nitrides and Borides.
    Ohkubo I; Aizawa T; Nakamura K; Mori T
    Front Chem; 2021; 9():642388. PubMed ID: 34386477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale.
    Luo G; Ren X; Zhang S; Wu H; Choy WC; He Z; Cao Y
    Small; 2016 Mar; 12(12):1547-71. PubMed ID: 26856789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Conversion of Perovskite Thin Films into Nanowires with Kinetic Control for Flexible Optoelectronic Devices.
    Zhu P; Gu S; Shen X; Xu N; Tan Y; Zhuang S; Deng Y; Lu Z; Wang Z; Zhu J
    Nano Lett; 2016 Feb; 16(2):871-6. PubMed ID: 26797488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active silicon integrated nanophotonics: ferroelectric BaTiO₃ devices.
    Xiong C; Pernice WH; Ngai JH; Reiner JW; Kumah D; Walker FJ; Ahn CH; Tang HX
    Nano Lett; 2014 Mar; 14(3):1419-25. PubMed ID: 24447145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature.
    Huang CC; Al-Saab F; Wang Y; Ou JY; Walker JC; Wang S; Gholipour B; Simpson RE; Hewak DW
    Nanoscale; 2014 Nov; 6(21):12792-7. PubMed ID: 25226424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.