These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
587 related articles for article (PubMed ID: 28463501)
21. Targeting macrophages using nanoparticles: a potential therapeutic strategy for atherosclerosis. Zang X; Cheng M; Zhang X; Chen X J Mater Chem B; 2021 Apr; 9(15):3284-3294. PubMed ID: 33881414 [TBL] [Abstract][Full Text] [Related]
22. Targeted Therapy of Atherosclerosis by a Broad-Spectrum Reactive Oxygen Species Scavenging Nanoparticle with Intrinsic Anti-inflammatory Activity. Wang Y; Li L; Zhao W; Dou Y; An H; Tao H; Xu X; Jia Y; Lu S; Zhang J; Hu H ACS Nano; 2018 Sep; 12(9):8943-8960. PubMed ID: 30114351 [TBL] [Abstract][Full Text] [Related]
24. Orally Targeted Delivery of Tripeptide KPV via Hyaluronic Acid-Functionalized Nanoparticles Efficiently Alleviates Ulcerative Colitis. Xiao B; Xu Z; Viennois E; Zhang Y; Zhang Z; Zhang M; Han MK; Kang Y; Merlin D Mol Ther; 2017 Jul; 25(7):1628-1640. PubMed ID: 28143741 [TBL] [Abstract][Full Text] [Related]
25. Activatable fluorescence imaging of macrophages in atherosclerotic plaques using iron oxide nanoparticles conjugated with indocyanine green. Ikeda H; Ishii A; Sano K; Chihara H; Arai D; Abekura Y; Nishi H; Ono M; Saji H; Miyamoto S Atherosclerosis; 2018 Aug; 275():1-10. PubMed ID: 29852399 [TBL] [Abstract][Full Text] [Related]
26. MicroRNA-223 Induced Repolarization of Peritoneal Macrophages Using CD44 Targeting Hyaluronic Acid Nanoparticles for Anti-Inflammatory Effects. Tran TH; Krishnan S; Amiji MM PLoS One; 2016; 11(5):e0152024. PubMed ID: 27148749 [TBL] [Abstract][Full Text] [Related]
27. Multimodality Imaging of Angiogenesis in a Rabbit Atherosclerotic Model by GEBP11 Peptide Targeted Nanoparticles. Su T; Wang YB; Han D; Wang J; Qi S; Gao L; Shao YH; Qiao HY; Chen JW; Liang SH; Nie YZ; Li JY; Cao F Theranostics; 2017; 7(19):4791-4804. PubMed ID: 29187904 [No Abstract] [Full Text] [Related]
28. Sugar-based amphiphilic nanoparticles arrest atherosclerosis in vivo. Lewis DR; Petersen LK; York AW; Zablocki KR; Joseph LB; Kholodovych V; Prud'homme RK; Uhrich KE; Moghe PV Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2693-8. PubMed ID: 25691739 [TBL] [Abstract][Full Text] [Related]
29. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Choi KY; Min KH; Yoon HY; Kim K; Park JH; Kwon IC; Choi K; Jeong SY Biomaterials; 2011 Mar; 32(7):1880-9. PubMed ID: 21159377 [TBL] [Abstract][Full Text] [Related]
30. SPECT and fluorescence imaging of vulnerable atherosclerotic plaque with a vascular cell adhesion molecule 1 single-chain antibody fragment. Liu C; Zhang X; Song Y; Wang Y; Zhang F; Zhang Y; Zhang Y; Lan X Atherosclerosis; 2016 Nov; 254():263-270. PubMed ID: 27680307 [TBL] [Abstract][Full Text] [Related]
32. Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy. Li W; Yi X; Liu X; Zhang Z; Fu Y; Gong T J Control Release; 2016 Mar; 225():170-82. PubMed ID: 26826304 [TBL] [Abstract][Full Text] [Related]
33. Imaging of hypoxia in mouse atherosclerotic plaques with (64)Cu-ATSM. Nie X; Randolph GJ; Elvington A; Bandara N; Zheleznyak A; Gropler RJ; Woodard PK; Lapi SE Nucl Med Biol; 2016 Sep; 43(9):534-542. PubMed ID: 27372286 [TBL] [Abstract][Full Text] [Related]
34. Hyaluronic acid formulation of near infrared fluorophores optimizes surgical imaging in a prostate tumor xenograft. Souchek JJ; Wojtynek NE; Payne WM; Holmes MB; Dutta S; Qi B; Datta K; LaGrange CA; Mohs AM Acta Biomater; 2018 Jul; 75():323-333. PubMed ID: 29890268 [TBL] [Abstract][Full Text] [Related]
35. Design and development of Branched Poly(ß-aminoester) nanoparticles for Interleukin-10 gene delivery in a mouse model of atherosclerosis. Distasio N; Dierick F; Ebrahimian T; Tabrizian M; Lehoux S Acta Biomater; 2022 Apr; 143():356-371. PubMed ID: 35257950 [TBL] [Abstract][Full Text] [Related]
36. Reactive oxygen species-responsive nano-platform with dual-targeting and fluorescent lipid-specific imaging capabilities for the management of atherosclerotic plaques. He Z; Chen Q; Duan X; Zhong Y; Zhu L; Mou N; Yang X; Cao Y; Han Z; He H; Wu S; Wang G; Qin X; Qu K; Zhang K; Liu J; Wu W Acta Biomater; 2024 Jun; 181():375-390. PubMed ID: 38734284 [TBL] [Abstract][Full Text] [Related]
37. Molecular Imaging of Matrix Metalloproteinase-2 in Atherosclerosis Using a Smart Multifunctional PET/MRI Nanoparticle. Tu Y; Ma X; Chen H; Fan Y; Jiang L; Zhang R; Cheng Z Int J Nanomedicine; 2022; 17():6773-6789. PubMed ID: 36600879 [TBL] [Abstract][Full Text] [Related]
38. Detection of atherosclerotic plaques in ApoE-deficient mice using (99m)Tc-duramycin. Liu Z; Larsen BT; Lerman LO; Gray BD; Barber C; Hedayat AF; Zhao M; Furenlid LR; Pak KY; Woolfenden JM Nucl Med Biol; 2016 Aug; 43(8):496-505. PubMed ID: 27236285 [TBL] [Abstract][Full Text] [Related]
39. Hyaluronic acid: targeting immune modulatory components of the extracellular matrix in atherosclerosis. Bot PT; Hoefer IE; Piek JJ; Pasterkamp G Curr Med Chem; 2008; 15(8):786-91. PubMed ID: 18393848 [TBL] [Abstract][Full Text] [Related]