These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 28463651)
1. Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides. Taatjes CA Annu Rev Phys Chem; 2017 May; 68():183-207. PubMed ID: 28463651 [TBL] [Abstract][Full Text] [Related]
2. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation. Percival CJ; Welz O; Eskola AJ; Savee JD; Osborn DL; Topping DO; Lowe D; Utembe SR; Bacak A; McFiggans G; Cooke MC; Xiao P; Archibald AT; Jenkin ME; Derwent RG; Riipinen I; Mok DW; Lee EP; Dyke JM; Taatjes CA; Shallcross DE Faraday Discuss; 2013; 165():45-73. PubMed ID: 24600996 [TBL] [Abstract][Full Text] [Related]
3. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates. Lee YP J Chem Phys; 2015 Jul; 143(2):020901. PubMed ID: 26178082 [TBL] [Abstract][Full Text] [Related]
5. Direct observation of the gas-phase Criegee intermediate (CH2OO). Taatjes CA; Meloni G; Selby TM; Trevitt AJ; Osborn DL; Percival CJ; Shallcross DE J Am Chem Soc; 2008 Sep; 130(36):11883-5. PubMed ID: 18702490 [TBL] [Abstract][Full Text] [Related]
6. Impact of the water dimer on the atmospheric reactivity of carbonyl oxides. Anglada JM; Solé A Phys Chem Chem Phys; 2016 Jun; 18(26):17698-712. PubMed ID: 27308802 [TBL] [Abstract][Full Text] [Related]
7. Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis. Taatjes CA; Shallcross DE; Percival CJ Phys Chem Chem Phys; 2014 Feb; 16(5):1704-18. PubMed ID: 24096945 [TBL] [Abstract][Full Text] [Related]
8. Online Quantification of Criegee Intermediates of α-Pinene Ozonolysis by Stabilization with Spin Traps and Proton-Transfer Reaction Mass Spectrometry Detection. Giorio C; Campbell SJ; Bruschi M; Tampieri F; Barbon A; Toffoletti A; Tapparo A; Paijens C; Wedlake AJ; Grice P; Howe DJ; Kalberer M J Am Chem Soc; 2017 Mar; 139(11):3999-4008. PubMed ID: 28201872 [TBL] [Abstract][Full Text] [Related]
9. Structure-dependent reactivity of Criegee intermediates studied with spectroscopic methods. Jr-Min Lin J; Chao W Chem Soc Rev; 2017 Dec; 46(24):7483-7497. PubMed ID: 28840926 [TBL] [Abstract][Full Text] [Related]
10. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone. Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381 [TBL] [Abstract][Full Text] [Related]
11. Direct kinetic measurements of Criegee intermediate (CH₂OO) formed by reaction of CH₂I with O₂. Welz O; Savee JD; Osborn DL; Vasu SS; Percival CJ; Shallcross DE; Taatjes CA Science; 2012 Jan; 335(6065):204-7. PubMed ID: 22246773 [TBL] [Abstract][Full Text] [Related]
12. Criegee Intermediates Beyond Ozonolysis: Synthetic and Mechanistic Insights. Hassan Z; Stahlberger M; Rosenbaum N; Bräse S Angew Chem Int Ed Engl; 2021 Jul; 60(28):15138-15152. PubMed ID: 33283439 [TBL] [Abstract][Full Text] [Related]
13. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene. Womack CC; Martin-Drumel MA; Brown GG; Field RW; McCarthy MC Sci Adv; 2015 Mar; 1(2):e1400105. PubMed ID: 26601145 [TBL] [Abstract][Full Text] [Related]
14. Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate. Caravan RL; Vansco MF; Au K; Khan MAH; Li YL; Winiberg FAF; Zuraski K; Lin YH; Chao W; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Lin JJ; Shallcross DE; Sheps L; Klippenstein SJ; Taatjes CA; Lester MI Proc Natl Acad Sci U S A; 2020 May; 117(18):9733-9740. PubMed ID: 32321826 [TBL] [Abstract][Full Text] [Related]
15. Infrared detection of Criegee intermediates formed during the ozonolysis of β-pinene and their reactivity towards sulfur dioxide. Ahrens J; Carlsson PT; Hertl N; Olzmann M; Pfeifle M; Wolf JL; Zeuch T Angew Chem Int Ed Engl; 2014 Jan; 53(3):715-9. PubMed ID: 24402798 [TBL] [Abstract][Full Text] [Related]
16. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. Johnson D; Marston G Chem Soc Rev; 2008 Apr; 37(4):699-716. PubMed ID: 18362978 [TBL] [Abstract][Full Text] [Related]
17. Chemistry of Functionalized Reactive Organic Intermediates in the Earth's Atmosphere: Impact, Challenges, and Progress. Barber VP; Kroll JH J Phys Chem A; 2021 Dec; 125(48):10264-10279. PubMed ID: 34846877 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the simplest hydroperoxide ester, hydroperoxymethyl formate, a precursor of atmospheric aerosols. Porterfield JP; Lee KLK; Dell'Isola V; Carroll PB; McCarthy MC Phys Chem Chem Phys; 2019 Aug; 21(33):18065-18070. PubMed ID: 31378792 [TBL] [Abstract][Full Text] [Related]
19. Direct Probing of Criegee Intermediates from Gas-Phase Ozonolysis Using Chemical Ionization Mass Spectrometry. Berndt T; Herrmann H; Kurtén T J Am Chem Soc; 2017 Sep; 139(38):13387-13392. PubMed ID: 28853879 [TBL] [Abstract][Full Text] [Related]
20. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes. Drozd GT; Donahue NM J Phys Chem A; 2011 May; 115(17):4381-7. PubMed ID: 21476564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]