BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 28463980)

  • 21. A Bacterial Chromosome Structuring Protein Binds Overtwisted DNA to Stimulate Type II Topoisomerases and Enable DNA Replication.
    Guo MS; Haakonsen DL; Zeng W; Schumacher MA; Laub MT
    Cell; 2018 Oct; 175(2):583-597.e23. PubMed ID: 30220456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic pathways of topology simplification by Type-II topoisomerases in knotted supercoiled DNA.
    Ziraldo R; Hanke A; Levene SD
    Nucleic Acids Res; 2019 Jan; 47(1):69-84. PubMed ID: 30476194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcription-dependent dynamic supercoiling is a short-range genomic force.
    Kouzine F; Gupta A; Baranello L; Wojtowicz D; Ben-Aissa K; Liu J; Przytycka TM; Levens D
    Nat Struct Mol Biol; 2013 Mar; 20(3):396-403. PubMed ID: 23416947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial topoisomerases and the control of DNA supercoiling.
    Drlica K
    Trends Genet; 1990 Dec; 6(12):433-7. PubMed ID: 1965069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. First functional characterization of a singly expressed bacterial type II topoisomerase: the enzyme from Mycobacterium tuberculosis.
    Aubry A; Fisher LM; Jarlier V; Cambau E
    Biochem Biophys Res Commun; 2006 Sep; 348(1):158-65. PubMed ID: 16876125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topological insulators inhibit diffusion of transcription-induced positive supercoils in the chromosome of Escherichia coli.
    Moulin L; Rahmouni AR; Boccard F
    Mol Microbiol; 2005 Jan; 55(2):601-10. PubMed ID: 15659173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring In Vivo Supercoil Dynamics and Transcription Elongation Rates in Bacterial Chromosomes.
    Patrick Higgins N
    Methods Mol Biol; 2017; 1624():17-27. PubMed ID: 28842872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential control of transcription-induced and overall DNA supercoiling by eukaryotic topoisomerases in vitro.
    Wang Z; Dröge P
    EMBO J; 1996 Feb; 15(3):581-9. PubMed ID: 8599941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topoisomerase IV can functionally replace all type 1A topoisomerases in Bacillus subtilis.
    Reuß DR; Faßhauer P; Mroch PJ; Ul-Haq I; Koo BM; Pöhlein A; Gross CA; Daniel R; Brantl S; Stülke J
    Nucleic Acids Res; 2019 Jun; 47(10):5231-5242. PubMed ID: 30957856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA supercoiling and temperature adaptation: A clue to early diversification of life?
    López-García P
    J Mol Evol; 1999 Oct; 49(4):439-52. PubMed ID: 10486002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An atypical type II topoisomerase from Mycobacterium smegmatis with positive supercoiling activity.
    Jain P; Nagaraja V
    Mol Microbiol; 2005 Dec; 58(5):1392-405. PubMed ID: 16313624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased negative superhelical density in vivo enhances the genetic instability of triplet repeat sequences.
    Napierala M; Bacolla A; Wells RD
    J Biol Chem; 2005 Nov; 280(45):37366-76. PubMed ID: 16166072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recognition of DNA Supercoil Handedness during Catenation Catalyzed by Type II Topoisomerases.
    Dalvie ED; Stacy JC; Neuman KC; Osheroff N
    Biochemistry; 2022 Oct; 61(19):2148-2158. PubMed ID: 36122251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction in vitro of type III intermediate filament proteins with supercoiled plasmid DNA and modulation of eukaryotic DNA topoisomerase I and II activities.
    Li G; Tolstonog GV; Sabasch M; Traub P
    DNA Cell Biol; 2002 Oct; 21(10):743-69. PubMed ID: 12443544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Positive supercoiling of DNA greatly diminishes mRNA synthesis in yeast.
    Gartenberg MR; Wang JC
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11461-5. PubMed ID: 1333610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reverse gyrase transiently unwinds double-stranded DNA in an ATP-dependent reaction.
    Ganguly A; del Toro Duany Y; Klostermeier D
    J Mol Biol; 2013 Jan; 425(1):32-40. PubMed ID: 23123378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooperative relaxation of supercoils and periodic transcriptional initiation within polymerase batteries.
    Guptasarma P
    Bioessays; 1996 Apr; 18(4):325-32. PubMed ID: 8967901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils.
    Fernández X; Díaz-Ingelmo O; Martínez-García B; Roca J
    EMBO J; 2014 Jul; 33(13):1492-501. PubMed ID: 24859967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of DNA topology on plasmid DNA repair in vivo.
    Park JY; Ahn B
    FEBS Lett; 2000 Jul; 476(3):174-8. PubMed ID: 10913608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.