These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 28464096)
1. The impact of multi-generational genotype imputation strategies on imputation accuracy and subsequent genomic predictions. Judge MM; Purfield DC; Sleator RD; Berry DP J Anim Sci; 2017 Apr; 95(4):1489-1501. PubMed ID: 28464096 [TBL] [Abstract][Full Text] [Related]
2. Multi-generational imputation of single nucleotide polymorphism marker genotypes and accuracy of genomic selection. Toghiani S; Aggrey SE; Rekaya R Animal; 2016 Jul; 10(7):1077-85. PubMed ID: 27076192 [TBL] [Abstract][Full Text] [Related]
3. Design of a low-density SNP chip for the main Australian sheep breeds and its effect on imputation and genomic prediction accuracy. Bolormaa S; Gore K; van der Werf JH; Hayes BJ; Daetwyler HD Anim Genet; 2015 Oct; 46(5):544-56. PubMed ID: 26360638 [TBL] [Abstract][Full Text] [Related]
4. Imputation of non-genotyped sheep from the genotypes of their mates and resulting progeny. Berry DP; McHugh N; Randles S; Wall E; McDermott K; Sargolzaei M; O'Brien AC Animal; 2018 Feb; 12(2):191-198. PubMed ID: 28712375 [TBL] [Abstract][Full Text] [Related]
5. Genotype imputation from various low-density SNP panels and its impact on accuracy of genomic breeding values in pigs. Grossi DA; Brito LF; Jafarikia M; Schenkel FS; Feng Z Animal; 2018 Nov; 12(11):2235-2245. PubMed ID: 29706144 [TBL] [Abstract][Full Text] [Related]
6. Imputation of non-genotyped F1 dams to improve genetic gain in swine crossbreeding programs. See GM; Fix JS; Schwab CR; Spangler ML J Anim Sci; 2022 May; 100(5):. PubMed ID: 35451025 [TBL] [Abstract][Full Text] [Related]
7. Genomic predictions for economically important traits in Brazilian Braford and Hereford beef cattle using true and imputed genotypes. Piccoli ML; Brito LF; Braccini J; Cardoso FF; Sargolzaei M; Schenkel FS BMC Genet; 2017 Jan; 18(1):2. PubMed ID: 28100165 [TBL] [Abstract][Full Text] [Related]
8. Assets of imputation to ultra-high density for productive and functional traits. Jiménez-Montero JA; Gianola D; Weigel K; Alenda R; González-Recio O J Dairy Sci; 2013 Sep; 96(9):6047-58. PubMed ID: 23810591 [TBL] [Abstract][Full Text] [Related]
9. The feasibility of using low-density marker panels for genotype imputation and genomic prediction of crossbred dairy cattle of East Africa. Aliloo H; Mrode R; Okeyo AM; Ni G; Goddard ME; Gibson JP J Dairy Sci; 2018 Oct; 101(10):9108-9127. PubMed ID: 30077450 [TBL] [Abstract][Full Text] [Related]
10. Genomic prediction ability for beef fatty acid profile in Nelore cattle using different pseudo-phenotypes. Chiaia HLJ; Peripolli E; de Oliveira Silva RM; Feitosa FLB; de Lemos MVA; Berton MP; Olivieri BF; Espigolan R; Tonussi RL; Gordo DGM; de Albuquerque LG; de Oliveira HN; Ferrinho AM; Mueller LF; Kluska S; Tonhati H; Pereira ASC; Aguilar I; Baldi F J Appl Genet; 2018 Nov; 59(4):493-501. PubMed ID: 30251238 [TBL] [Abstract][Full Text] [Related]
11. Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. Khatkar MS; Moser G; Hayes BJ; Raadsma HW BMC Genomics; 2012 Oct; 13():538. PubMed ID: 23043356 [TBL] [Abstract][Full Text] [Related]
12. Strategies for single nucleotide polymorphism (SNP) genotyping to enhance genotype imputation in Gyr (Bos indicus) dairy cattle: Comparison of commercially available SNP chips. Boison SA; Santos DJ; Utsunomiya AH; Carvalheiro R; Neves HH; O'Brien AM; Garcia JF; Sölkner J; da Silva MV J Dairy Sci; 2015 Jul; 98(7):4969-89. PubMed ID: 25958293 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of measures of correctness of genotype imputation in the context of genomic prediction: a review of livestock applications. Calus MP; Bouwman AC; Hickey JM; Veerkamp RF; Mulder HA Animal; 2014 Nov; 8(11):1743-53. PubMed ID: 25045914 [TBL] [Abstract][Full Text] [Related]
14. Imputation of genotypes with low-density chips and its effect on reliability of direct genomic values in Dutch Holstein cattle. Mulder HA; Calus MP; Druet T; Schrooten C J Dairy Sci; 2012 Feb; 95(2):876-89. PubMed ID: 22281352 [TBL] [Abstract][Full Text] [Related]
15. Imputation of ungenotyped parental genotypes in dairy and beef cattle from progeny genotypes. Berry DP; McParland S; Kearney JF; Sargolzaei M; Mullen MP Animal; 2014 Jun; 8(6):895-903. PubMed ID: 24840560 [TBL] [Abstract][Full Text] [Related]
16. Accuracy of genotype imputation based on random and selected reference sets in purebred and crossbred sheep populations and its effect on accuracy of genomic prediction. Moghaddar N; Gore KP; Daetwyler HD; Hayes BJ; van der Werf JH Genet Sel Evol; 2015 Dec; 47():97. PubMed ID: 26694131 [TBL] [Abstract][Full Text] [Related]
17. Accuracy of estimation of genomic breeding values in pigs using low-density genotypes and imputation. Badke YM; Bates RO; Ernst CW; Fix J; Steibel JP G3 (Bethesda); 2014 Apr; 4(4):623-31. PubMed ID: 24531728 [TBL] [Abstract][Full Text] [Related]
18. High imputation accuracy from informative low-to-medium density single nucleotide polymorphism genotypes is achievable in sheep1. O'Brien AC; Judge MM; Fair S; Berry DP J Anim Sci; 2019 Apr; 97(4):1550-1567. PubMed ID: 30722011 [TBL] [Abstract][Full Text] [Related]
19. A mating advice system in dairy cattle incorporating genomic information. Carthy TR; McCarthy J; Berry DP J Dairy Sci; 2019 Sep; 102(9):8210-8220. PubMed ID: 31229287 [TBL] [Abstract][Full Text] [Related]
20. Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations. Dassonneville R; Brøndum RF; Druet T; Fritz S; Guillaume F; Guldbrandtsen B; Lund MS; Ducrocq V; Su G J Dairy Sci; 2011 Jul; 94(7):3679-86. PubMed ID: 21700057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]