BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28464237)

  • 1. Ultrafiltration behavior of monoclonal antibodies and Fc-fusion proteins: Effects of physical properties.
    Baek Y; Singh N; Arunkumar A; Borys M; Li ZJ; Zydney AL
    Biotechnol Bioeng; 2017 Sep; 114(9):2057-2065. PubMed ID: 28464237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafiltration of highly concentrated antibody solutions: Experiments and modeling for the effects of module and buffer conditions.
    Binabaji E; Ma J; Rao S; Zydney AL
    Biotechnol Prog; 2016 May; 32(3):692-701. PubMed ID: 26918655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-criteria manufacturability indices for ranking high-concentration monoclonal antibody formulations.
    Yang Y; Velayudhan A; Thornhill NF; Farid SS
    Biotechnol Bioeng; 2017 Sep; 114(9):2043-2056. PubMed ID: 28464235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for high-concentration drug substance manufacturing to facilitate subcutaneous administration: A review.
    Holstein M; Hung J; Feroz H; Ranjan S; Du C; Ghose S; Li ZJ
    Biotechnol Bioeng; 2020 Nov; 117(11):3591-3606. PubMed ID: 32687221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High concentration biotherapeutic formulation and ultrafiltration: Part 1 pressure limits.
    Lutz H; Arias J; Zou Y
    Biotechnol Prog; 2017 Jan; 33(1):113-124. PubMed ID: 27452237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular interactions in highly concentrated formulations of recombinant therapeutic proteins.
    Baek Y; Zydney AL
    Curr Opin Biotechnol; 2018 Oct; 53():59-64. PubMed ID: 29278833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular Interactions and the Viscosity of Highly Concentrated Monoclonal Antibody Solutions.
    Binabaji E; Ma J; Zydney AL
    Pharm Res; 2015 Sep; 32(9):3102-9. PubMed ID: 25832501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Small-Scale Process for Predicting Donnan and Volume Exclusion Effects During Ultrafiltration/Diafiltration Process Development.
    Abel J; Kosky A; Ball N; Bacon H; Kaushik R; Kleemann GR
    J Pharm Sci; 2018 May; 107(5):1296-1303. PubMed ID: 29339134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-efficiency affinity precipitation of multiple industrial mAbs and Fc-fusion proteins from cell culture harvests using Z-ELP-E2 nanocages.
    Swartz AR; Xu X; Traylor SJ; Li ZJ; Chen W
    Biotechnol Bioeng; 2018 Aug; 115(8):2039-2047. PubMed ID: 29679468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Impurities from Sugar Excipient on Filtrate Flux during Ultrafiltration and Diafiltration Process.
    Lee J; Na J; Baek Y
    Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein aggregation kinetics during Protein A chromatography. Case study for an Fc fusion protein.
    Shukla AA; Gupta P; Han X
    J Chromatogr A; 2007 Nov; 1171(1-2):22-8. PubMed ID: 17920607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights in understanding aggregate formation and dissociation in cation exchange chromatography for a structurally unstable Fc-fusion protein.
    Chen Z; Huang C; Chennamsetty N; Xu X; Li ZJ
    J Chromatogr A; 2016 Aug; 1460():110-22. PubMed ID: 27452990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of zinc chloride and PEG concentrations on the critical flux during tangential flow microfiltration of BSA precipitates.
    Li Z; Zydney AL
    Biotechnol Prog; 2017 Nov; 33(6):1561-1567. PubMed ID: 28840656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Histidine and Sucrose on the Biophysical Properties of a Monoclonal Antibody.
    Baek Y; Singh N; Arunkumar A; Zydney AL
    Pharm Res; 2017 Mar; 34(3):629-639. PubMed ID: 28035628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of membrane structure on the filtrate flux during monoclonal antibody filtration through virus retentive membranes.
    Billups M; Minervini M; Holstein M; Feroz H; Ranjan S; Hung J; Bao H; Li ZJ; Ghose S; Zydney AL
    Biotechnol Prog; 2022 Mar; 38(2):e3231. PubMed ID: 34994527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The osmotic pressure of highly concentrated monoclonal antibody solutions: effect of solution conditions.
    Binabaji E; Rao S; Zydney AL
    Biotechnol Bioeng; 2014 Mar; 111(3):529-36. PubMed ID: 23996891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic model of pH and excipient concentration during ultrafiltration and diafiltration processes of therapeutic antibodies.
    Ladwig JE; Zhu X; Rolandi P; Hart R; Robinson J; Rydholm A
    Biotechnol Prog; 2020 Sep; 36(5):e2993. PubMed ID: 32185869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor-Fc fusion therapeutics, traps, and MIMETIBODY technology.
    Huang C
    Curr Opin Biotechnol; 2009 Dec; 20(6):692-9. PubMed ID: 19889530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionation of bovine serum albumin and monoclonal antibody alemtuzumab using carrier phase ultrafiltration.
    Wan Y; Ghosh R; Hale G; Cui Z
    Biotechnol Bioeng; 2005 May; 90(3):303-15. PubMed ID: 15803473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanistic model to account for the Donnan and volume exclusion effects in ultrafiltration/diafiltration process of protein formulations.
    Yu Z; Moomaw JF; Thyagarajapuram NR; Geng SB; Bent CJ; Tang Y
    Biotechnol Prog; 2021 Mar; 37(2):e3106. PubMed ID: 33289341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.