These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
450 related articles for article (PubMed ID: 28464493)
1. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies' niche differentiation and relative risks under scenarios of climate change. Meynard CN; Gay PE; Lecoq M; Foucart A; Piou C; Chapuis MP Glob Chang Biol; 2017 Nov; 23(11):4739-4749. PubMed ID: 28464493 [TBL] [Abstract][Full Text] [Related]
2. On the relative role of climate change and management in the current desert locust outbreak in East Africa. Meynard CN; Lecoq M; Chapuis MP; Piou C Glob Chang Biol; 2020 Jul; 26(7):3753-3755. PubMed ID: 32347994 [TBL] [Abstract][Full Text] [Related]
3. Plague dynamics and population genetics of the desert locust: can turnover during recession maintain population genetic structure? Ibrahim KM Mol Ecol; 2001 Mar; 10(3):581-91. PubMed ID: 11298970 [TBL] [Abstract][Full Text] [Related]
4. Worldwide niche and future potential distribution of Culicoides imicola, a major vector of bluetongue and African horse sickness viruses. Guichard S; Guis H; Tran A; Garros C; Balenghien T; Kriticos DJ PLoS One; 2014; 9(11):e112491. PubMed ID: 25391148 [TBL] [Abstract][Full Text] [Related]
5. An increase in management actions has compensated for past climate change effects on desert locust gregarization in western Africa. Herbillon F; Piou C; Meynard CN Heliyon; 2024 Apr; 10(8):e29231. PubMed ID: 38644897 [TBL] [Abstract][Full Text] [Related]
6. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts. Tanner EP; Papeş M; Elmore RD; Fuhlendorf SD; Davis CA PLoS One; 2017; 12(9):e0184316. PubMed ID: 28886075 [TBL] [Abstract][Full Text] [Related]
7. How climate change might influence the potential distribution of weed, bushmint (Hyptis suaveolens)? Padalia H; Srivastava V; Kushwaha SP Environ Monit Assess; 2015 Apr; 187(4):210. PubMed ID: 25810084 [TBL] [Abstract][Full Text] [Related]
8. Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks. Wang B; Deveson ED; Waters C; Spessa A; Lawton D; Feng P; Liu L Sci Total Environ; 2019 Jun; 668():947-957. PubMed ID: 31018473 [TBL] [Abstract][Full Text] [Related]
9. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878 [TBL] [Abstract][Full Text] [Related]
10. Ligustrum lucidum W. T. Aiton (broad-leaf privet) demonstrates climatic niche shifts during global-scale invasion. Dreyer JBB; Higuchi P; Silva AC Sci Rep; 2019 Mar; 9(1):3813. PubMed ID: 30846781 [TBL] [Abstract][Full Text] [Related]
12. Are recession populations of the desert locust (Schistocerca gregaria) remnants of past swarms? Ibrahim KM; Sourrouille P; Hewitt GM Mol Ecol; 2000 Jun; 9(6):783-91. PubMed ID: 10849294 [TBL] [Abstract][Full Text] [Related]
13. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. Alkishe AA; Peterson AT; Samy AM PLoS One; 2017; 12(12):e0189092. PubMed ID: 29206879 [TBL] [Abstract][Full Text] [Related]
14. A review of historical and recent locust outbreaks: Links to global warming, food security and mitigation strategies. Peng W; Ma NL; Zhang D; Zhou Q; Yue X; Khoo SC; Yang H; Guan R; Chen H; Zhang X; Wang Y; Wei Z; Suo C; Peng Y; Yang Y; Lam SS; Sonne C Environ Res; 2020 Dec; 191():110046. PubMed ID: 32841638 [TBL] [Abstract][Full Text] [Related]
15. Distribution patterns and potential suitable habitat prediction of Ceracris kiangsu (Orthoptera: Arcypteridae) under climate change- a case study of China and Southeast Asia. Li C; Luo G; Yue C; Zhang L; Duan Y; Liu Y; Yang S; Wang Z; Chen P Sci Rep; 2024 Sep; 14(1):20580. PubMed ID: 39232079 [TBL] [Abstract][Full Text] [Related]
16. Non-swarming grasshoppers exhibit density-dependent phenotypic plasticity reminiscent of swarming locusts. Gotham S; Song H J Insect Physiol; 2013 Nov; 59(11):1151-9. PubMed ID: 24035748 [TBL] [Abstract][Full Text] [Related]
17. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly. Fourcade Y; Ranius T; Öckinger E J Anim Ecol; 2017 Oct; 86(6):1339-1351. PubMed ID: 28796909 [TBL] [Abstract][Full Text] [Related]
18. Predicting shifts in distribution range and niche breadth of plant species in contrasting arid environments under climate change. Rather ZA; Ahmad R; Dar AR; Dar TUH; Khuroo AA Environ Monit Assess; 2021 Jun; 193(7):427. PubMed ID: 34143311 [TBL] [Abstract][Full Text] [Related]
19. First draft genome assembly of the desert locust, Verlinden H; Sterck L; Li J; Li Z; Yssel A; Gansemans Y; Verdonck R; Holtof M; Song H; Behmer ST; Sword GA; Matheson T; Ott SR; Deforce D; Van Nieuwerburgh F; Van de Peer Y; Vanden Broeck J F1000Res; 2020; 9():775. PubMed ID: 33163158 [No Abstract] [Full Text] [Related]
20. Phase-specific responses to different qualities of food in the desert locust, Schistocerca gregaria: developmental, morphological and reproductive characteristics. Maeno K; Tanaka S J Insect Physiol; 2011 Apr; 57(4):514-20. PubMed ID: 21315076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]