These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28464604)

  • 1. Monitoring Water Clusters "Melt" Through Vibrational Spectroscopy.
    Brown SE; Götz AW; Cheng X; Steele RP; Mandelshtam VA; Paesani F
    J Am Chem Soc; 2017 May; 139(20):7082-7088. PubMed ID: 28464604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isomeric Equilibria, Nuclear Quantum Effects, and Vibrational Spectra of M
    Riera M; Brown SE; Paesani F
    J Phys Chem A; 2018 Jul; 122(27):5811-5821. PubMed ID: 29897757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.
    Lupi L; Kastelowitz N; Molinero V
    J Chem Phys; 2014 Nov; 141(18):18C508. PubMed ID: 25399173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the Molecular Structure of the Air/Water Interface from Quantum Simulations of the Sum-Frequency Generation Spectrum.
    Medders GR; Paesani F
    J Am Chem Soc; 2016 Mar; 138(11):3912-9. PubMed ID: 26943730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.
    Gerber RB; Varner ME; Hammerich AD; Riikonen S; Murdachaew G; Shemesh D; Finlayson-Pitts BJ
    Acc Chem Res; 2015 Feb; 48(2):399-406. PubMed ID: 25647299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Getting the Right Answers for the Right Reasons: Toward Predictive Molecular Simulations of Water with Many-Body Potential Energy Functions.
    Paesani F
    Acc Chem Res; 2016 Sep; 49(9):1844-51. PubMed ID: 27548325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice.
    Reddy SK; Straight SC; Bajaj P; Huy Pham C; Riera M; Moberg DR; Morales MA; Knight C; Götz AW; Paesani F
    J Chem Phys; 2016 Nov; 145(19):194504. PubMed ID: 27875875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water clusters in an argon matrix: infrared spectra from molecular dynamics simulations with a self-consistent charge density functional-based tight binding/force-field potential.
    Simon A; Iftner C; Mascetti J; Spiegelman F
    J Phys Chem A; 2015 Mar; 119(11):2449-67. PubMed ID: 25650885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 'first principles' potential energy surface for liquid water from VRT spectroscopy of water clusters.
    Goldman N; Leforestier C; Saykally RJ
    Philos Trans A Math Phys Eng Sci; 2005 Feb; 363(1827):493-508. PubMed ID: 15664895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The water hexamer: three-body interactions, structures, energetics, and OH-stretch spectroscopy at finite temperature.
    Tainter CJ; Skinner JL
    J Chem Phys; 2012 Sep; 137(10):104304. PubMed ID: 22979856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, stability, and infrared spectroscopy of (H2O)nNH4(+) clusters: a theoretical study at zero and finite temperature.
    Douady J; Calvo F; Spiegelman F
    J Chem Phys; 2008 Oct; 129(15):154305. PubMed ID: 19045191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum nature of the hydrogen bond from ambient conditions down to ultra-low temperatures.
    Schran C; Marx D
    Phys Chem Chem Phys; 2019 Dec; 21(45):24967-24975. PubMed ID: 31702755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The water hexamer: cage, prism, or both. Full dimensional quantum simulations say both.
    Wang Y; Babin V; Bowman JM; Paesani F
    J Am Chem Soc; 2012 Jul; 134(27):11116-9. PubMed ID: 22731508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function.
    Reddy SK; Moberg DR; Straight SC; Paesani F
    J Chem Phys; 2017 Dec; 147(24):244504. PubMed ID: 29289126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen bond cooperativity and the three-dimensional structures of water nonamers and decamers.
    Pérez C; Zaleski DP; Seifert NA; Temelso B; Shields GC; Kisiel Z; Pate BH
    Angew Chem Int Ed Engl; 2014 Dec; 53(52):14368-72. PubMed ID: 25348841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared and Raman Spectroscopy of Liquid Water through "First-Principles" Many-Body Molecular Dynamics.
    Medders GR; Paesani F
    J Chem Theory Comput; 2015 Mar; 11(3):1145-54. PubMed ID: 26579763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building up water-wire clusters: isomer-selective ultraviolet and infrared spectra of jet-cooled 2-aminopurine (H2O)n, n = 2 and 3.
    Lobsiger S; Sinha RK; Leutwyler S
    J Phys Chem B; 2013 Oct; 117(41):12410-21. PubMed ID: 24107005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational spectroscopy of microhydrated conjugate base anions.
    Asmis KR; Neumark DM
    Acc Chem Res; 2012 Jan; 45(1):43-52. PubMed ID: 21675714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robustness of Frequency, Transition Dipole, and Coupling Maps for Water Vibrational Spectroscopy.
    Gruenbaum SM; Tainter CJ; Shi L; Ni Y; Skinner JL
    J Chem Theory Comput; 2013 Jul; 9(7):3109-17. PubMed ID: 26583990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.