These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28464650)

  • 1. Bounds on the longitudinal and shear wave attenuation ratio of polycrystalline materials.
    Kube CM; Norris AN
    J Acoust Soc Am; 2017 Apr; 141(4):2633. PubMed ID: 28464650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative solution to bulk wave propagation in polycrystalline materials.
    Kube CM
    J Acoust Soc Am; 2017 Mar; 141(3):1804. PubMed ID: 28372077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A special relation between Young's modulus, Rayleigh-wave velocity, and Poisson's ratio.
    Malischewsky PG; Tuan TT
    J Acoust Soc Am; 2009 Dec; 126(6):2851-3. PubMed ID: 20000895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic attenuation coefficients for polycrystalline materials containing crystallites of any symmetry class.
    Kube CM; Turner JA
    J Acoust Soc Am; 2015 Jun; 137(6):EL476-82. PubMed ID: 26093458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure influence on elastic wave attenuation in polycrystalline materials.
    Kube CM; Arguelles AP
    J Acoust Soc Am; 2019 Dec; 146(6):4183. PubMed ID: 31893712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple scattering from assemblies of dislocation walls in three dimensions. Application to propagation in polycrystals.
    Maurel A; Pagneux V; Barra F; Lund F
    J Acoust Soc Am; 2007 Jun; 121(6):3418-31. PubMed ID: 17552693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.
    Zhou JX; Zhang XZ
    J Acoust Soc Am; 2012 Dec; 132(6):3698-705. PubMed ID: 23231101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal bounds for attenuation of elastic waves in porous fluid-saturated media.
    Glubokovskikh S; Gurevich B
    J Acoust Soc Am; 2017 Nov; 142(5):3321. PubMed ID: 29195474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic wave propagation predictions for polycrystalline materials using three-dimensional synthetic microstructures: Phase velocity variations.
    Norouzian M; Turner JA
    J Acoust Soc Am; 2019 Apr; 145(4):2171. PubMed ID: 31046304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grain-size dependence of shear wave speed dispersion and attenuation in granular marine sediments.
    Kimura M
    J Acoust Soc Am; 2014 Jul; 136(1):EL53-9. PubMed ID: 24993238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuation and dispersion of leaky Rayleigh wave in polycrystals.
    Li S; Song Y; Li X
    J Acoust Soc Am; 2022 Dec; 152(6):3271. PubMed ID: 36586881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of Elastic and Acoustic Properties of an Agar-Based Tissue Mimicking Material.
    Brewin MP; Birch MJ; Mehta DJ; Reeves JW; Shaw S; Kruse C; Whiteman JR; Hu S; Kenz ZR; Banks HT; Greenwald SE
    Ann Biomed Eng; 2015 Oct; 43(10):2587-96. PubMed ID: 25773982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple scattering in random dispersions of spherical scatterers: Effects of shear-acoustic interactions.
    Pinfield VJ; Forrester DM
    J Acoust Soc Am; 2017 Jan; 141(1):649. PubMed ID: 28147598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical model of longitudinal wave scattering in polycrystals.
    Ghoshal G; Turner JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1419-28. PubMed ID: 19574152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of shear-wave attenuation in unconsolidated sands and glass beads.
    Buckingham MJ
    J Acoust Soc Am; 2014 Nov; 136(5):2478-88. PubMed ID: 25373950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape effect of elongated grains on ultrasonic attenuation in polycrystalline materials.
    Yang L; Lobkis OI; Rokhlin SI
    Ultrasonics; 2011 Aug; 51(6):697-708. PubMed ID: 21396672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ultrasonic attenuation within two- and three-dimensional polycrystalline media.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2020 Jan; 100():105980. PubMed ID: 31479969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material property estimates from ultrasound attenuation in fibre suspensions.
    Aitomäki Y; Löfqvist T
    Ultrasonics; 2009 May; 49(4-5):432-7. PubMed ID: 19157476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic attenuation of polycrystalline materials with a distribution of grain sizes.
    Arguelles AP; Turner JA
    J Acoust Soc Am; 2017 Jun; 141(6):4347. PubMed ID: 28618813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unifying fractional wave equation for compressional and shear waves.
    Holm S; Sinkus R
    J Acoust Soc Am; 2010 Jan; 127(1):542-59. PubMed ID: 20058999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.