These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
648 related articles for article (PubMed ID: 28464800)
1. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force. Bochkezanian V; Newton RU; Trajano GS; Vieira A; Pulverenti TS; Blazevich AJ BMC Neurol; 2017 May; 17(1):82. PubMed ID: 28464800 [TBL] [Abstract][Full Text] [Related]
2. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI). Bochkezanian V; Newton RU; Trajano GS; Vieira A; Pulverenti TS; Blazevich AJ BMC Neurol; 2018 Feb; 18(1):17. PubMed ID: 29433467 [TBL] [Abstract][Full Text] [Related]
3. Effects of three neuromuscular electrical stimulation methods on muscle force production and neuromuscular fatigue. Alahmari SK; Shield AJ; Trajano GS Scand J Med Sci Sports; 2022 Oct; 32(10):1456-1463. PubMed ID: 35844045 [TBL] [Abstract][Full Text] [Related]
4. Influence of wide-pulse neuromuscular electrical stimulation frequency and superimposed tendon vibration on occurrence and magnitude of extra torque. Espeit L; Rozand V; Millet GY; Gondin J; Maffiuletti NA; Lapole T J Appl Physiol (1985); 2021 Jul; 131(1):302-312. PubMed ID: 34080917 [TBL] [Abstract][Full Text] [Related]
5. Central Contribution to Electrically Induced Fatigue depends on Stimulation Frequency. Grosprêtre S; Gueugneau N; Martin A; Lepers R Med Sci Sports Exerc; 2017 Aug; 49(8):1530-1540. PubMed ID: 28291023 [TBL] [Abstract][Full Text] [Related]
6. Influence of stimulus pulse width on M-waves, H-reflexes, and torque during tetanic low-intensity neuromuscular stimulation. Lagerquist O; Collins DF Muscle Nerve; 2010 Dec; 42(6):886-93. PubMed ID: 20886511 [TBL] [Abstract][Full Text] [Related]
8. Acute effects of conventional versus wide-pulse neuromuscular electrical stimulation on quadriceps evoked torque and neuromuscular function. Espeit L; Luneau E; Brownstein CG; Gondin J; Millet GY; Rozand V; Maffiuletti NA; Lapole T Scand J Med Sci Sports; 2023 Aug; 33(8):1307-1321. PubMed ID: 37067173 [TBL] [Abstract][Full Text] [Related]
9. Effect of combined electrical stimulation and brief muscle lengthening on torque development. Pineau A; Martin A; Lepers R; Papaiordanidou M J Appl Physiol (1985); 2024 Apr; 136(4):844-852. PubMed ID: 38357725 [TBL] [Abstract][Full Text] [Related]
10. Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction. Borzuola R; Labanca L; Macaluso A; Laudani L Eur J Appl Physiol; 2020 Sep; 120(9):2105-2113. PubMed ID: 32676751 [TBL] [Abstract][Full Text] [Related]
11. Effects of electrical stimulation parameters on fatigue in skeletal muscle. Gorgey AS; Black CD; Elder CP; Dudley GA J Orthop Sports Phys Ther; 2009 Sep; 39(9):684-92. PubMed ID: 19721215 [TBL] [Abstract][Full Text] [Related]
12. Cortical motor output decreases after neuromuscular fatigue induced by electrical stimulation of the plantar flexor muscles. Alexandre F; Derosiere G; Papaiordanidou M; Billot M; Varray A Acta Physiol (Oxf); 2015 May; 214(1):124-34. PubMed ID: 25740017 [TBL] [Abstract][Full Text] [Related]
13. Involuntary sustained firing of plantar flexor motor neurones: effect of electrical stimulation parameters during tendon vibration. Mesquita RNO; Taylor JL; Kirk B; Blazevich AJ Eur J Appl Physiol; 2021 Mar; 121(3):881-891. PubMed ID: 33392744 [TBL] [Abstract][Full Text] [Related]
14. Decreased excitability of motor axons contributes substantially to contraction fatigability during neuromuscular electrical stimulation. Luu MJ; Jones KE; Collins DF Appl Physiol Nutr Metab; 2021 Apr; 46(4):346-355. PubMed ID: 32997951 [TBL] [Abstract][Full Text] [Related]
15. Alternating Current Is More Fatigable Than Pulsed Current in People Who Are Healthy: A Double-Blind, Randomized Crossover Trial. Paz IA; Rigo GT; Sgarioni A; Baroni BM; Frasson VB; Vaz MA Phys Ther; 2021 Jun; 101(6):. PubMed ID: 33561279 [TBL] [Abstract][Full Text] [Related]
16. Effect of Muscle-Tendon Unit Length on Child-Adult Difference in Neuromuscular Fatigue. Piponnier E; Martin V; Chalchat E; Bontemps B; Julian V; Bocock O; Duclos M; Ratel S Med Sci Sports Exerc; 2019 Sep; 51(9):1961-1970. PubMed ID: 31415444 [TBL] [Abstract][Full Text] [Related]
17. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features. Zhou YX; Wang HP; Bao XL; Lü XY; Wang ZG J Neural Eng; 2016 Feb; 13(1):016004. PubMed ID: 26644193 [TBL] [Abstract][Full Text] [Related]
18. Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: quadriceps femoris. Bergquist AJ; Wiest MJ; Collins DF J Appl Physiol (1985); 2012 Jul; 113(1):78-89. PubMed ID: 22556395 [TBL] [Abstract][Full Text] [Related]
19. Effect of muscle length on maximum evoked torque, discomfort, contraction fatigue, and strength adaptations during electrical stimulation in adult populations: A systematic review. Cavalcante JGT; Ribeiro VHS; Marqueti RC; Paz IA; Bastos JAI; Vaz MA; Babault N; Durigan JLQ PLoS One; 2024; 19(6):e0304205. PubMed ID: 38857245 [TBL] [Abstract][Full Text] [Related]
20. Impact of stimulation frequency on neuromuscular fatigue. Vitry F; Martin A; Papaiordanidou M Eur J Appl Physiol; 2019 Dec; 119(11-12):2609-2616. PubMed ID: 31605203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]