These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 28464824)
1. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python. Andrew AL; Perry BW; Card DC; Schield DR; Ruggiero RP; McGaugh SE; Choudhary A; Secor SM; Castoe TA BMC Genomics; 2017 May; 18(1):338. PubMed ID: 28464824 [TBL] [Abstract][Full Text] [Related]
2. Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding. Andrew AL; Card DC; Ruggiero RP; Schield DR; Adams RH; Pollock DD; Secor SM; Castoe TA Physiol Genomics; 2015 May; 47(5):147-57. PubMed ID: 25670730 [TBL] [Abstract][Full Text] [Related]
3. Renal plasticity in response to feeding in the Burmese python, Python molurus bivittatus. Esbaugh AJ; Secor SM; Grosell M Comp Biochem Physiol A Mol Integr Physiol; 2015 Oct; 188():120-6. PubMed ID: 26123779 [TBL] [Abstract][Full Text] [Related]
4. Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation. Wall CE; Cozza S; Riquelme CA; McCombie WR; Heimiller JK; Marr TG; Leinwand LA Physiol Genomics; 2011 Jan; 43(2):69-76. PubMed ID: 21045117 [TBL] [Abstract][Full Text] [Related]
5. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus). Slay CE; Enok S; Hicks JW; Wang T J Exp Biol; 2014 May; 217(Pt 10):1784-9. PubMed ID: 24311803 [TBL] [Abstract][Full Text] [Related]
6. Utility of the burmese Python as a model for studying plasticity of extreme physiological systems. Tan Y; Martin TG; Harrison BC; Leinwand LA J Muscle Res Cell Motil; 2023 Jun; 44(2):95-106. PubMed ID: 36316565 [TBL] [Abstract][Full Text] [Related]
7. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Castoe TA; de Koning AP; Hall KT; Card DC; Schield DR; Fujita MK; Ruggiero RP; Degner JF; Daza JM; Gu W; Reyes-Velasco J; Shaney KJ; Castoe JM; Fox SE; Poole AW; Polanco D; Dobry J; Vandewege MW; Li Q; Schott RK; Kapusta A; Minx P; Feschotte C; Uetz P; Ray DA; Hoffmann FG; Bogden R; Smith EN; Chang BS; Vonk FJ; Casewell NR; Henkel CV; Richardson MK; Mackessy SP; Bronikowski AM; Yandell M; Warren WC; Secor SM; Pollock DD Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20645-50. PubMed ID: 24297902 [TBL] [Abstract][Full Text] [Related]
8. Characterization of carbonic anhydrase XIII in the erythrocytes of the Burmese python, Python molurus bivittatus. Esbaugh AJ; Secor SM; Grosell M Comp Biochem Physiol B Biochem Mol Biol; 2015 Sep; 187():71-7. PubMed ID: 26005204 [TBL] [Abstract][Full Text] [Related]
9. Novel ecological and climatic conditions drive rapid adaptation in invasive Florida Burmese pythons. Card DC; Perry BW; Adams RH; Schield DR; Young AS; Andrew AL; Jezkova T; Pasquesi GIM; Hales NR; Walsh MR; Rochford MR; Mazzotti FJ; Hart KM; Hunter ME; Castoe TA Mol Ecol; 2018 Dec; 27(23):4744-4757. PubMed ID: 30269397 [TBL] [Abstract][Full Text] [Related]
10. Multi-species comparisons of snakes identify coordinated signalling networks underlying post-feeding intestinal regeneration. Perry BW; Andrew AL; Mostafa Kamal AH; Card DC; Schield DR; Pasquesi GIM; Pellegrino MW; Mackessy SP; Chowdhury SM; Secor SM; Castoe TA Proc Biol Sci; 2019 Jul; 286(1906):20190910. PubMed ID: 31288694 [TBL] [Abstract][Full Text] [Related]
11. Single-cell resolution of intestinal regeneration in pythons without crypts illuminates conserved vertebrate regenerative mechanisms. Westfall AK; Gopalan SS; Kay JC; Tippetts TS; Cervantes MB; Lackey K; Chowdhury SM; Pellegrino MW; Castoe TA Proc Natl Acad Sci U S A; 2024 Oct; 121(43):e2405463121. PubMed ID: 39423244 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome analysis of the response of Burmese python to digestion. Duan J; Sanggaard KW; Schauser L; Lauridsen SE; Enghild JJ; Schierup MH; Wang T Gigascience; 2017 Aug; 6(8):1-18. PubMed ID: 28873961 [TBL] [Abstract][Full Text] [Related]
13. Functional changes with feeding in the gastro-intestinal epithelia of the Burmese python (Python molurus). Helmstetter C; Reix N; T'Flachebba M; Pope RK; Secor SM; Le Maho Y; Lignot JH Zoolog Sci; 2009 Sep; 26(9):632-8. PubMed ID: 19799514 [TBL] [Abstract][Full Text] [Related]
14. Identification of an integrated stress and growth response signaling switch that directs vertebrate intestinal regeneration. Westfall AK; Perry BW; Kamal AHM; Hales NR; Kay JC; Sapkota M; Schield DR; Pellegrino MW; Secor SM; Chowdhury SM; Castoe TA BMC Genomics; 2022 Jan; 23(1):6. PubMed ID: 34983392 [TBL] [Abstract][Full Text] [Related]
15. Molecular genetic evidence for parthenogenesis in the Burmese python, Python molurus bivittatus. Groot TV; Bruins E; Breeuwer JA Heredity (Edinb); 2003 Feb; 90(2):130-5. PubMed ID: 12634818 [TBL] [Abstract][Full Text] [Related]
16. Digestive physiology of the Burmese python: broad regulation of integrated performance. Secor SM J Exp Biol; 2008 Dec; 211(Pt 24):3767-74. PubMed ID: 19043049 [TBL] [Abstract][Full Text] [Related]
17. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Reyes-Velasco J; Card DC; Andrew AL; Shaney KJ; Adams RH; Schield DR; Casewell NR; Mackessy SP; Castoe TA Mol Biol Evol; 2015 Jan; 32(1):173-83. PubMed ID: 25338510 [TBL] [Abstract][Full Text] [Related]
18. Global downstream pathway analysis reveals a dependence of oncogenic NF-E2-related factor 2 mutation on the mTOR growth signaling pathway. Shibata T; Saito S; Kokubu A; Suzuki T; Yamamoto M; Hirohashi S Cancer Res; 2010 Nov; 70(22):9095-105. PubMed ID: 21062981 [TBL] [Abstract][Full Text] [Related]
19. Matched regulation of gastrointestinal performance in the Burmese python, Python molurus. Cox CL; Secor SM J Exp Biol; 2008 Apr; 211(Pt 7):1131-40. PubMed ID: 18344488 [TBL] [Abstract][Full Text] [Related]
20. Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes. Castoe TA; de Koning JA; Hall KT; Yokoyama KD; Gu W; Smith EN; Feschotte C; Uetz P; Ray DA; Dobry J; Bogden R; Mackessy SP; Bronikowski AM; Warren WC; Secor SM; Pollock DD Genome Biol; 2011 Jul; 12(7):406. PubMed ID: 21801464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]