These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28464826)

  • 1. microTaboo: a general and practical solution to the k-disjoint problem.
    Al-Jaff M; Sandström E; Grabherr M
    BMC Bioinformatics; 2017 May; 18(1):228. PubMed ID: 28464826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KCMBT: a k-mer Counter based on Multiple Burst Trees.
    Mamun AA; Pal S; Rajasekaran S
    Bioinformatics; 2016 Sep; 32(18):2783-90. PubMed ID: 27283950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. libFLASM: a software library for fixed-length approximate string matching.
    Ayad LA; Pissis SP; Retha A
    BMC Bioinformatics; 2016 Nov; 17(1):454. PubMed ID: 27832739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BatMis: a fast algorithm for k-mismatch mapping.
    Tennakoon C; Purbojati RW; Sung WK
    Bioinformatics; 2012 Aug; 28(16):2122-8. PubMed ID: 22689389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sketching Methods with Small Window Guarantee Using Minimum Decycling Sets.
    Marçais G; DeBlasio D; Kingsford C
    J Comput Biol; 2024 Jul; 31(7):597-615. PubMed ID: 38980804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual sequences in large sets of gene sequences may be distinguished efficiently by combinations of shared sub-sequences.
    Gibbs MJ; Armstrong JS; Gibbs AJ
    BMC Bioinformatics; 2005 Apr; 6():90. PubMed ID: 15817134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KMC 2: fast and resource-frugal k-mer counting.
    Deorowicz S; Kokot M; Grabowski S; Debudaj-Grabysz A
    Bioinformatics; 2015 May; 31(10):1569-76. PubMed ID: 25609798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.
    Marçais G; Kingsford C
    Bioinformatics; 2011 Mar; 27(6):764-70. PubMed ID: 21217122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of common k-mers for whole genome sequences using SSB-tree.
    Choi JH; Cho HG
    Genome Inform; 2002; 13():30-41. PubMed ID: 14571372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of sampling on the efficiency and accuracy of k-mer indexes: Theoretical and empirical comparisons using the human genome.
    Almutairy M; Torng E
    PLoS One; 2017; 12(7):e0179046. PubMed ID: 28686614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blue: correcting sequencing errors using consensus and context.
    Greenfield P; Duesing K; Papanicolaou A; Bauer DC
    Bioinformatics; 2014 Oct; 30(19):2723-32. PubMed ID: 24919879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes.
    Kurtz S; Narechania A; Stein JC; Ware D
    BMC Genomics; 2008 Oct; 9():517. PubMed ID: 18976482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base-By-Base: single nucleotide-level analysis of whole viral genome alignments.
    Brodie R; Smith AJ; Roper RL; Tcherepanov V; Upton C
    BMC Bioinformatics; 2004 Jul; 5():96. PubMed ID: 15253776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shifted Hamming distance: a fast and accurate SIMD-friendly filter to accelerate alignment verification in read mapping.
    Xin H; Greth J; Emmons J; Pekhimenko G; Kingsford C; Alkan C; Mutlu O
    Bioinformatics; 2015 May; 31(10):1553-60. PubMed ID: 25577434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Provably Efficient Algorithm for the k-Mismatch Average Common Substring Problem.
    Thankachan SV; Apostolico A; Aluru S
    J Comput Biol; 2016 Jun; 23(6):472-82. PubMed ID: 27058840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RTAnalyzer: a web application for finding new retrotransposons and detecting L1 retrotransposition signatures.
    Lucier JF; Perreault J; Noël JF; Boire G; Perreault JP
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W269-74. PubMed ID: 17545202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EDAR: an efficient error detection and removal algorithm for next generation sequencing data.
    Zhao X; Palmer LE; Bolanos R; Mircean C; Fasulo D; Wittenberg GM
    J Comput Biol; 2010 Nov; 17(11):1549-60. PubMed ID: 20973743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome.
    Gardner SN; Slezak T; Hall BG
    Bioinformatics; 2015 Sep; 31(17):2877-8. PubMed ID: 25913206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neptune: a bioinformatics tool for rapid discovery of genomic variation in bacterial populations.
    Marinier E; Zaheer R; Berry C; Weedmark KA; Domaratzki M; Mabon P; Knox NC; Reimer AR; Graham MR; Chui L; Patterson-Fortin L; Zhang J; Pagotto F; Farber J; Mahony J; Seyer K; Bekal S; Tremblay C; Isaac-Renton J; Prystajecky N; Chen J; Slade P; Van Domselaar G
    Nucleic Acids Res; 2017 Oct; 45(18):e159. PubMed ID: 29048594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple alignment of DNA sequences with MAFFT.
    Katoh K; Asimenos G; Toh H
    Methods Mol Biol; 2009; 537():39-64. PubMed ID: 19378139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.