These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 2846498)
1. Roles of CO2, O2, and acid in arteriovenous [H+] difference during muscle contractions. Stainsby WN; Eitzman PD J Appl Physiol (1985); 1988 Oct; 65(4):1803-10. PubMed ID: 2846498 [TBL] [Abstract][Full Text] [Related]
2. Sprint training enhances ionic regulation during intense exercise in men. McKenna MJ; Heigenhauser GJ; McKelvie RS; MacDougall JD; Jones NL J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):687-702. PubMed ID: 9218228 [TBL] [Abstract][Full Text] [Related]
3. [Base excess] and [strong ion difference] during O2-CO2 exchange. Schlichtig R Adv Exp Med Biol; 1997; 411():97-102. PubMed ID: 9269416 [TBL] [Abstract][Full Text] [Related]
4. Lactate and acid-base exchange during brief intense contractions of skeletal muscle in situ. Brechue WF; Stainsby WN J Appl Physiol (1985); 1994 Jul; 77(1):223-30. PubMed ID: 7961237 [TBL] [Abstract][Full Text] [Related]
5. Role of lungs and inactive muscle in acid-base control after maximal exercise. Kowalchuk JM; Heigenhauser GJ; Lindinger MI; Obminski G; Sutton JR; Jones NL J Appl Physiol (1985); 1988 Nov; 65(5):2090-6. PubMed ID: 3145276 [TBL] [Abstract][Full Text] [Related]
6. Net O2, CO2, lactate, and acid exchange by muscle during progressive working contractions. Chirtel SJ; Barbee RW; Stainsby WN J Appl Physiol Respir Environ Exerc Physiol; 1984 Jan; 56(1):161-5. PubMed ID: 6420379 [TBL] [Abstract][Full Text] [Related]
7. Influence of stimulation parameters on the release of adenosine, lactate and CO2 from contracting dog gracilis muscle. Achike FI; Ballard HJ J Physiol; 1993 Apr; 463():107-21. PubMed ID: 8246177 [TBL] [Abstract][Full Text] [Related]
8. Lactic acid output of cat gastrocnemius-plantaris during repetitive twitch contractions. Stainsby WN; Eitzman PD Med Sci Sports Exerc; 1986 Dec; 18(6):668-73. PubMed ID: 3097452 [TBL] [Abstract][Full Text] [Related]
9. Effect of chronic acetazolamide administration on gas exchange and acid-base control after maximal exercise. Kowalchuk JM; Heigenhauser GJ; Sutton JR; Jones NL J Appl Physiol (1985); 1994 Mar; 76(3):1211-9. PubMed ID: 8005865 [TBL] [Abstract][Full Text] [Related]
10. Changes in arterial, mixed venous and intraerythrocytic concentrations of ions in supramaximally exercising horses. Bayly WM; Kingston JK; Brown JA; Keegan RD; Greene SA; Sides RH Equine Vet J Suppl; 2006 Aug; (36):294-7. PubMed ID: 17402435 [TBL] [Abstract][Full Text] [Related]
11. Net lactate uptake during progressive steady-level contractions in canine skeletal muscle. Gladden LB J Appl Physiol (1985); 1991 Aug; 71(2):514-20. PubMed ID: 1938723 [TBL] [Abstract][Full Text] [Related]
12. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Zhang H; Vincent JL Am Rev Respir Dis; 1993 Oct; 148(4 Pt 1):867-71. PubMed ID: 8214940 [TBL] [Abstract][Full Text] [Related]
13. Role of skeletal muscle in plasma ion and acid-base regulation after NaHCO3 and KHCO3 loading in humans. Lindinger MI; Franklin TW; Lands LC; Pedersen PK; Welsh DG; Heigenhauser GJ Am J Physiol; 1999 Jan; 276(1):R32-43. PubMed ID: 9887175 [TBL] [Abstract][Full Text] [Related]
14. Partition of plasma hydrogen ion concentration changes during repeated sprints. Kronfeld DS; Ferrante PL; Taylor LE; Tiegs W Equine Vet J Suppl; 1999 Jul; (30):380-3. PubMed ID: 10659286 [TBL] [Abstract][Full Text] [Related]
15. Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Siggaard-Andersen O; Fogh-Andersen N Acta Anaesthesiol Scand Suppl; 1995; 107():123-8. PubMed ID: 8599264 [TBL] [Abstract][Full Text] [Related]
16. Blood ion regulation during repeated maximal exercise and recovery in humans. Lindinger MI; Heigenhauser GJ; McKelvie RS; Jones NL Am J Physiol; 1992 Jan; 262(1 Pt 2):R126-36. PubMed ID: 1733331 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of O2, CO2, lactate, and acid exchange during contractions and recovery. Barbee RW; Stainsby WN; Chirtel SJ J Appl Physiol Respir Environ Exerc Physiol; 1983 Jun; 54(6):1687-92. PubMed ID: 6409859 [No Abstract] [Full Text] [Related]
18. Dissociation between lactate and proton exchange in muscle during intense exercise in man. Bangsbo J; Juel C; Hellsten Y; Saltin B J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):489-99. PubMed ID: 9365920 [TBL] [Abstract][Full Text] [Related]
19. Factors influencing hydrogen ion concentration in muscle after intense exercise. Kowalchuk JM; Heigenhauser GJ; Lindinger MI; Sutton JR; Jones NL J Appl Physiol (1985); 1988 Nov; 65(5):2080-9. PubMed ID: 3145275 [TBL] [Abstract][Full Text] [Related]
20. Limitation of maximal O2 uptake and performance by acute hypoxia in dog muscle in situ. Hogan MC; Roca J; Wagner PD; West JB J Appl Physiol (1985); 1988 Aug; 65(2):815-21. PubMed ID: 3170431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]