BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28465055)

  • 1. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007.
    Thapa LP; Lee SJ; Park C; Kim SW
    Enzyme Microb Technol; 2017 Jul; 102():1-8. PubMed ID: 28465055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation.
    Jang JW; Jung HM; Im DK; Jung MY; Oh MK
    Enzyme Microb Technol; 2017 Nov; 106():114-118. PubMed ID: 28859805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes.
    Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K
    Microb Cell Fact; 2015 Jun; 14():80. PubMed ID: 26063229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.
    Jung MY; Ng CY; Song H; Lee J; Oh MK
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):461-9. PubMed ID: 22297429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol.
    Thapa LP; Lee SJ; Yang XG; Yoo HY; Kim SB; Park C; Kim SW
    Bioprocess Biosyst Eng; 2014 Jun; 37(6):1073-84. PubMed ID: 24185706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of glycerol-utilizing Escherichia coli strain for the production of bioethanol.
    Thapa LP; Lee SJ; Yoo HY; Choi HS; Park C; Kim SW
    Enzyme Microb Technol; 2013 Aug; 53(3):206-15. PubMed ID: 23830464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes.
    Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K
    Appl Environ Microbiol; 2015 Feb; 81(3):929-37. PubMed ID: 25416770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of EayjjPB encoding a dicarboxylate transporter important for succinate production under aerobic and anaerobic conditions in Enterobacter aerogenes.
    Fukui K; Nanatani K; Hara Y; Tokura M; Abe K
    J Biosci Bioeng; 2018 May; 125(5):505-512. PubMed ID: 29395959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioengineering of the Enterobacter aerogenes strain for biohydrogen production.
    Zhang C; Lv FX; Xing XH
    Bioresour Technol; 2011 Sep; 102(18):8344-9. PubMed ID: 21764301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced hydrogen production of Enterobacter aerogenes mutated by nuclear irradiation.
    Cheng J; Liu M; Song W; Ding L; Liu J; Zhang L; Cen K
    Bioresour Technol; 2017 Mar; 227():50-55. PubMed ID: 28013136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate.
    Um J; Kim DG; Jung MY; Saratale GD; Oh MK
    Bioresour Technol; 2017 Dec; 245(Pt B):1567-1574. PubMed ID: 28596073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production.
    Lu P; Bai R; Gao T; Chen J; Jiang K; Zhu Y; Lu Y; Zhang S; Xu F; Zhao H
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):146. PubMed ID: 38240862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production.
    Jung MY; Park BS; Lee J; Oh MK
    Bioresour Technol; 2013 Jul; 139():21-7. PubMed ID: 23644066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved 2,3-butanediol yield and productivity from lignocellulose biomass hydrolysate in metabolically engineered Enterobacter aerogenes.
    Kim DG; Yoo SW; Kim M; Ko JK; Um Y; Oh MK
    Bioresour Technol; 2020 Aug; 309():123386. PubMed ID: 32330805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of optically pure D-lactic acid from brown rice using metabolically engineered Lactobacillus plantarum.
    Okano K; Hama S; Kihara M; Noda H; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1869-1875. PubMed ID: 27832309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of L-asparaginase production from novel Enterobacter sp., by submerged fermentation using response surface methodology.
    Erva RR; Goswami AN; Suman P; Vedanabhatla R; Rajulapati SB
    Prep Biochem Biotechnol; 2017 Mar; 47(3):219-228. PubMed ID: 27340934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing hydrogen production of Enterobacter aerogenes by heterologous expression of hydrogenase genes originated from Synechocystis sp.
    Song W; Cheng J; Zhao J; Zhang C; Zhou J; Cen K
    Bioresour Technol; 2016 Sep; 216():976-80. PubMed ID: 27343449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes.
    Zhao H; Lu Y; Wang L; Zhang C; Yang C; Xing X
    Bioresour Technol; 2015 Oct; 194():99-107. PubMed ID: 26188552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene.
    Geckil H; Barak Z; Chipman DM; Erenler SO; Webster DA; Stark BC
    Bioprocess Biosyst Eng; 2004 Oct; 26(5):325-30. PubMed ID: 15309606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.
    Tajima Y; Kaida K; Hayakawa A; Fukui K; Nishio Y; Hashiguchi K; Fudou R; Matsui K; Usuda Y; Sode K
    Appl Microbiol Biotechnol; 2014 Sep; 98(18):7803-13. PubMed ID: 24962116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.