BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 2846519)

  • 21. Diffusion-potential-induced oxidation and reduction of cytochromes in chromatophores from Rhodopseudomonas sphaeroides.
    Matsuura K; Nishimura M
    J Biochem; 1978 Sep; 84(3):539-46. PubMed ID: 214426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dicyclohexylcarbodiimide inhibition of succinate- and ubiquinol-cytochrome c reductase in beef heart mitochondria.
    Degli Esposti M; Parenti-Castelli G; Lenaz G
    Ital J Biochem; 1981; 30(6):453-63. PubMed ID: 6277826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Steady-state kinetics of ubiquinol-cytochrome c reductase in bovine heart submitochondrial particles: diffusional effects.
    Fato R; Cavazzoni M; Castelluccio C; Parenti Castelli G; Palmer G; Degli Esposti M; Lenaz G
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):225-36. PubMed ID: 8382478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pH dependence of the oxidation-reduction potential of cytochrome c2.
    Pettigrew GW; Meyer TE; Bartsch RG; Kamen MD
    Biochim Biophys Acta; 1976 May; 430(2):197-208. PubMed ID: 6058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of ubiquinol oxidase reconstituted from ubiquinol-cytochrome c reductase, cytochrome c and cytochrome c oxidase.
    Diggens RJ; Ragan CI
    Biochem J; 1982 Feb; 202(2):527-34. PubMed ID: 6284131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata.
    McEwan AG; Greenfield AJ; Wetzstein HG; Jackson JB; Ferguson SJ
    J Bacteriol; 1985 Nov; 164(2):823-30. PubMed ID: 2997133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cytochrome bc1 complex of Rhodobacter sphaeroides can restore cytochrome c2-independent photosynthetic growth to a Rhodobacter capsulatus mutant lacking cytochrome bc1.
    Davidson E; Prince RC; Haith CE; Daldal F
    J Bacteriol; 1989 Nov; 171(11):6059-68. PubMed ID: 2553670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning and sequencing of the fbcF, B and C genes encoding the cytochrome b/c1 complex from Rhodopseudomonas viridis.
    Verbist J; Lang F; Gabellini N; Oesterhelt D
    Mol Gen Genet; 1989 Nov; 219(3):445-52. PubMed ID: 2560136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The interrelation of the two c-type cytochromes in Rhodopseudomonas sphaeroides photosynthesis.
    Wood PM
    Biochem J; 1980 Nov; 192(2):761-4. PubMed ID: 6263260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonance-raman evidence for anomalous heme structures in cytochrome c' from Rhodopseudomonas palustris.
    Strekas TC; Spiro TG
    Biochim Biophys Acta; 1974 Jun; 351(2):237-45. PubMed ID: 4366150
    [No Abstract]   [Full Text] [Related]  

  • 31. Identification of nitric oxide reductase activity in Rhodobacter capsulatus: the electron transport pathway can either use or bypass both cytochrome c2 and the cytochrome bc1 complex.
    Bell LC; Richardson DJ; Ferguson SJ
    J Gen Microbiol; 1992 Mar; 138(3):437-43. PubMed ID: 1317404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The location and function of cytochrome c2 in Rhodopseudomonas capsulate membranes.
    Hochman A; Fridberg I; Carmeli C
    Eur J Biochem; 1975 Oct; 58(1):65-72. PubMed ID: 241634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mobile cytochrome c2 and membrane-anchored cytochrome cy are both efficient electron donors to the cbb3- and aa3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides.
    Daldal F; Mandaci S; Winterstein C; Myllykallio H; Duyck K; Zannoni D
    J Bacteriol; 2001 Mar; 183(6):2013-24. PubMed ID: 11222600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and characterization of a dissimilatory nitrite reductase from the phototrophic bacterium Rhodopseudomonas palustris.
    Preuss M; Klemme JH
    Z Naturforsch C Biosci; 1983; 38(11-12):933-8. PubMed ID: 6670357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristics and amino-acid composition of a c-type cytochrome in electron acceptor function during thiosulfate-linked photoautotrophic growth of Rhodopseudomonas palustris.
    Schmitt W; Schleifer G; Horstmann HJ; Knobloch K
    Hoppe Seylers Z Physiol Chem; 1983 Jun; 364(6):647-50. PubMed ID: 6309643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclic voltammetry and 1H-NMR of Rhodopseudomonas palustris cytochrome c2. Probing surface charges through anion-binding studies.
    Battistuzzi G; Borsari M; Dallari D; Ferretti S; Sola M
    Eur J Biochem; 1995 Oct; 233(1):335-9. PubMed ID: 7588763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction kinetics of bacterial cytochromes c2.
    Wood FE; Post CB; Cusanovich MA
    Arch Biochem Biophys; 1977 Dec; 184(2):586-95. PubMed ID: 202201
    [No Abstract]   [Full Text] [Related]  

  • 38. Purification and characterization of a phosphotransacetylase from Rhodopseudomonas palustris.
    Vigenschow H; Schwarm HM; Knobloch K
    Biol Chem Hoppe Seyler; 1986 Sep; 367(9):957-62. PubMed ID: 3790263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conservation of the free energy change of the alkaline isomerization in mitochondrial and bacterial cytochromes c.
    Battistuzzi G; Borsari M; Ranieri A; Sola M
    Arch Biochem Biophys; 2002 Aug; 404(2):227-33. PubMed ID: 12147260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Porphobilinogenase from Rhodopseudomonas palustris.
    Juknat AA; Kotler ML; Koopmann GE; Batlle AM
    Comp Biochem Physiol B; 1989; 92(2):291-5. PubMed ID: 2924537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.