BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28465218)

  • 21. Chemical class-specific gene expression changes in the zebrafish embryo after exposure to glycol ether alkoxy acids and 1,2,4-triazole antifungals.
    Hermsen SA; Pronk TE; van den Brandhof EJ; van der Ven LT; Piersma AH
    Reprod Toxicol; 2011 Sep; 32(2):245-52. PubMed ID: 21621602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio).
    Capiotti KM; Menezes FP; Nazario LR; Pohlmann JB; de Oliveira GM; Fazenda L; Bogo MR; Bonan CD; Da Silva RS
    Neurotoxicol Teratol; 2011; 33(6):680-5. PubMed ID: 21914471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging.
    Wang Y; Seebald JL; Szeto DP; Irudayaraj J
    ACS Nano; 2010 Jul; 4(7):4039-53. PubMed ID: 20552995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topological network analysis of differentially expressed genes in cancer cells with acquired gefitinib resistance.
    Lee YS; Hwang SG; Kim JK; Park TH; Kim YR; Myeong HS; Kwon K; Jang CS; Noh YH; Kim SY
    Cancer Genomics Proteomics; 2015; 12(3):153-66. PubMed ID: 25977174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptomic Changes in Zebrafish Embryos and Larvae Following Benzo[a]pyrene Exposure.
    Fang X; Corrales J; Thornton C; Clerk T; Scheffler BE; Willett KL
    Toxicol Sci; 2015 Aug; 146(2):395-411. PubMed ID: 26001963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptomics reveal an integrative role for maternal thyroid hormones during zebrafish embryogenesis.
    Silva N; Louro B; Trindade M; Power DM; Campinho MA
    Sci Rep; 2017 Nov; 7(1):16657. PubMed ID: 29192226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Liver toxicity of macrolide antibiotics in zebrafish.
    Zhang MQ; Chen B; Zhang JP; Chen N; Liu CZ; Hu CQ
    Toxicology; 2020 Aug; 441():152501. PubMed ID: 32454074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microarray Expression Profiling and Raman Spectroscopy Reveal Anti-Fatty Liver Action of Berberine in a Diet-Induced Larval Zebrafish Model.
    Chen B; Zheng YM; Zhang MQ; Han Y; Zhang JP; Hu CQ
    Front Pharmacol; 2019; 10():1504. PubMed ID: 31969822
    [No Abstract]   [Full Text] [Related]  

  • 29. Inactivation of ca10a and ca10b Genes Leads to Abnormal Embryonic Development and Alters Movement Pattern in Zebrafish.
    Aspatwar A; Tolvanen ME; Ojanen MJ; Barker HR; Saralahti AK; Bäuerlein CA; Ortutay C; Pan P; Kuuslahti M; Parikka M; Rämet M; Parkkila S
    PLoS One; 2015; 10(7):e0134263. PubMed ID: 26218428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of cobalt on the development, oxidative stress, and apoptosis in zebrafish embryos.
    Cai G; Zhu J; Shen C; Cui Y; Du J; Chen X
    Biol Trace Elem Res; 2012 Dec; 150(1-3):200-7. PubMed ID: 22983774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Reduced Transcriptome Approach to Assess Environmental Toxicants Using Zebrafish Embryo Test.
    Wang P; Xia P; Yang J; Wang Z; Peng Y; Shi W; Villeneuve DL; Yu H; Zhang X
    Environ Sci Technol; 2018 Jan; 52(2):821-830. PubMed ID: 29224359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MicroRNA expression changes during zebrafish development induced by perfluorooctane sulfonate.
    Zhang L; Li YY; Zeng HC; Wei J; Wan YJ; Chen J; Xu SQ
    J Appl Toxicol; 2011 Apr; 31(3):210-22. PubMed ID: 20878907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Transcriptome of the Zebrafish Embryo After Chemical Exposure: A Meta-Analysis.
    Schüttler A; Reiche K; Altenburger R; Busch W
    Toxicol Sci; 2017 Jun; 157(2):291-304. PubMed ID: 28329862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene expression profiling of zebrafish embryonic retinal pigment epithelium in vivo.
    Leung YF; Ma P; Dowling JE
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):881-90. PubMed ID: 17251491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish.
    Haggard DE; Noyes PD; Waters KM; Tanguay RL
    Toxicol Appl Pharmacol; 2016 Oct; 308():32-45. PubMed ID: 27538710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of hoxb1b downstream genes: hoxb1b as a regulatory factor controlling transcriptional networks and cell movement during zebrafish gastrulation.
    van den Akker WM; Durston AJ; Spaink HP
    Int J Dev Biol; 2010; 54(1):55-62. PubMed ID: 19876844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes.
    Johnston IA; Lee HT; Macqueen DJ; Paranthaman K; Kawashima C; Anwar A; Kinghorn JR; Dalmay T
    J Exp Biol; 2009 Jun; 212(Pt 12):1781-93. PubMed ID: 19482995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling.
    Driessen M; Kienhuis AS; Pennings JL; Pronk TE; van de Brandhof EJ; Roodbergen M; Spaink HP; van de Water B; van der Ven LT
    Arch Toxicol; 2013 May; 87(5):807-23. PubMed ID: 23559145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of PMA-induced protein kinase C activation on development and apoptosis in early zebrafish embryos.
    Hrubik J; Glisic B; Samardzija D; Stanic B; Pogrmic-Majkic K; Fa S; Andric N
    Comp Biochem Physiol C Toxicol Pharmacol; 2016 Dec; 190():24-31. PubMed ID: 27521797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle.
    Salleh MS; Mazzoni G; Höglund JK; Olijhoek DW; Lund P; Løvendahl P; Kadarmideen HN
    BMC Genomics; 2017 Mar; 18(1):258. PubMed ID: 28340555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.