BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28465520)

  • 1. Numerical analysis of wide-field optical imaging with a sub-20 nm resolution based on a meta-sandwich structure.
    Cao S; Wang T; Yang J; Hu B; Levy U; Yu W
    Sci Rep; 2017 May; 7(1):1328. PubMed ID: 28465520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene on meta-surface for super-resolution optical imaging with a sub-10 nm resolution.
    Cao S; Wang T; Sun Q; Hu B; Levy U; Yu W
    Opt Express; 2017 Jun; 25(13):14494-14503. PubMed ID: 28789035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meta-nanocavity model for dynamic super-resolution fluorescent imaging based on the plasmonic structure illumination microscopy method.
    Cao S; Wang T; Sun Q; Hu B; Yu W
    Opt Express; 2017 Feb; 25(4):3863-3874. PubMed ID: 28241597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient Permittivity Meta-Structure model for Wide-field Super-resolution imaging with a sub-45 nm resolution.
    Cao S; Wang T; Xu W; Liu H; Zhang H; Hu B; Yu W
    Sci Rep; 2016 Mar; 6():23460. PubMed ID: 26996323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-Resolution Imaging at Mid-Infrared Waveband in Graphene-nanocavity formed on meta-surface.
    Yang J; Wang T; Chen Z; Hu B; Yu W
    Sci Rep; 2016 Nov; 6():37898. PubMed ID: 27897207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pixel super-resolution using wavelength scanning.
    Luo W; Zhang Y; Feizi A; Göröcs Z; Ozcan A
    Light Sci Appl; 2016 Apr; 5(4):e16060. PubMed ID: 30167157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realizing a terahertz far-field sub-diffraction optical needle with sub-wavelength concentric ring structure array.
    Ruan D; Li Z; Du L; Zhou X; Zhu L; Lin C; Yang M; Chen G; Yuan W; Liang G; Wen Z
    Appl Opt; 2018 Sep; 57(27):7905-7909. PubMed ID: 30462058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-oscillatory metasurface doublet for sub-diffraction focusing with a large incident angle.
    Li Z; Wang C; Wang Y; Lu X; Guo Y; Li X; Ma X; Pu M; Luo X
    Opt Express; 2021 Mar; 29(7):9991-9999. PubMed ID: 33820160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in super-resolution fluorescence imaging and its applications in biology.
    Han R; Li Z; Fan Y; Jiang Y
    J Genet Genomics; 2013 Dec; 40(12):583-95. PubMed ID: 24377865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for achieving super-resolved widefield CARS microscopy.
    Hajek KM; Littleton B; Turk D; McIntyre TJ; Rubinsztein-Dunlop H
    Opt Express; 2010 Aug; 18(18):19263-72. PubMed ID: 20940822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sub-nanometer drift correction for super-resolution imaging.
    Tang Y; Wang X; Zhang X; Li J; Dai L
    Opt Lett; 2014 Oct; 39(19):5685-8. PubMed ID: 25360959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide-field optical nanoprofilometry using structured illumination.
    Wang CC; Lee KL; Lee CH
    Opt Lett; 2009 Nov; 34(22):3538-40. PubMed ID: 19927203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting.
    Wei S; Lei T; Du L; Zhang C; Chen H; Yang Y; Zhu SW; Yuan XC
    Opt Express; 2015 Nov; 23(23):30143-8. PubMed ID: 26698495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super-resolution bright-field optical microscopy based on nanometer topographic contrast.
    Huang SW; Mong HY; Lee CH
    Microsc Res Tech; 2004 Nov; 65(4-5):180-5. PubMed ID: 15630691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Demonstration of Localized Plasmonic Structured Illumination Microscopy.
    Ponsetto JL; Bezryadina A; Wei F; Onishi K; Shen H; Huang E; Ferrari L; Ma Q; Zou Y; Liu Z
    ACS Nano; 2017 Jun; 11(6):5344-5350. PubMed ID: 28467053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-100-nanometre resolution in total internal reflection fluorescence microscopy.
    Beck M; Aschwanden M; Stemmer A
    J Microsc; 2008 Oct; 232(1):99-105. PubMed ID: 19017206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons.
    Smolyaninov II; Elliott J; Zayats AV; Davis CC
    Phys Rev Lett; 2005 Feb; 94(5):057401. PubMed ID: 15783692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens.
    Chung E; Kim D; Cui Y; Kim YH; So PT
    Biophys J; 2007 Sep; 93(5):1747-57. PubMed ID: 17483188
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.