These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28465660)

  • 1. The Effect of Body Mass on the Shoe-Athlete Interaction.
    Tsouknidas A; Pantazopoulos M; Sagris D; Fasnakis D; Maropoulos S; Arabatzi F; Michailidis N
    Appl Bionics Biomech; 2017; 2017():7136238. PubMed ID: 28465660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CAN RUNNERS PERCEIVE CHANGES IN HEEL CUSHIONING AS THE SHOE AGES WITH INCREASED MILEAGE?
    Cornwall MW; McPoil TG
    Int J Sports Phys Ther; 2017 Aug; 12(4):616-624. PubMed ID: 28900568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do running speed and shoe cushioning influence impact loading and tibial shock in basketball players?
    Lam WK; Liebenberg J; Woo J; Park SK; Yoon SH; Cheung RT; Ryu J
    PeerJ; 2018; 6():e4753. PubMed ID: 29770274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shoe Cushioning Influences the Running Injury Risk According to Body Mass: A Randomized Controlled Trial Involving 848 Recreational Runners.
    Malisoux L; Delattre N; Urhausen A; Theisen D
    Am J Sports Med; 2020 Feb; 48(2):473-480. PubMed ID: 31877062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of pressure insoles to compare in-shoe loading for modern running shoes.
    Dixon SJ
    Ergonomics; 2008 Oct; 51(10):1503-14. PubMed ID: 18803091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and perception of basketball landing in various heights and footwear cushioning.
    Wei Q; Wang Z; Woo J; Liebenberg J; Park SK; Ryu J; Lam WK
    PLoS One; 2018; 13(8):e0201758. PubMed ID: 30092009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Running-Related Injury From an Engineering, Medical and Sport Science Perspective.
    Papagiannaki M; Samoladas E; Maropoulos S; Arabatzi F
    Front Bioeng Biotechnol; 2020; 8():533391. PubMed ID: 33117776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adolescent runners: the effect of training shoes on running kinematics.
    Mullen S; Toby EB
    J Pediatr Orthop; 2013 Jun; 33(4):453-7. PubMed ID: 23653037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait-Specific Optimization of Composite Footwear Midsole Systems, Facilitated through Dynamic Finite Element Modelling.
    Drougkas D; Karatsis E; Papagiannaki M; Chatzimoisiadis S; Arabatzi F; Maropoulos S; Tsouknidas A
    Appl Bionics Biomech; 2018; 2018():6520314. PubMed ID: 30675182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tradeoffs between impact loading rate, vertical impulse and effective mass for walkers and heel strike runners wearing footwear of varying stiffness.
    Addison BJ; Lieberman DE
    J Biomech; 2015 May; 48(7):1318-24. PubMed ID: 25814181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased vertical impact forces and altered running mechanics with softer midsole shoes.
    Baltich J; Maurer C; Nigg BM
    PLoS One; 2015; 10(4):e0125196. PubMed ID: 25897963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower extremity biomechanical relationships with different speeds in traditional, minimalist, and barefoot footwear.
    Fredericks W; Swank S; Teisberg M; Hampton B; Ridpath L; Hanna JB
    J Sports Sci Med; 2015 Jun; 14(2):276-83. PubMed ID: 25983575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of footwear on running performance and running economy in distance runners.
    Fuller JT; Bellenger CR; Thewlis D; Tsiros MD; Buckley JD
    Sports Med; 2015 Mar; 45(3):411-22. PubMed ID: 25404508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies.
    Even-Tzur N; Weisz E; Hirsch-Falk Y; Gefen A
    Biomed Mater Eng; 2006; 16(5):289-99. PubMed ID: 17075164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Simulated Mass-Tunable Auxetic Midsole on Vertical Ground Reaction Force.
    Ford RR; Misra M; Mohanty AK; Brandon SCE
    J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35678792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanical protocol to replicate impact in walking footwear.
    Price C; Cooper G; Graham-Smith P; Jones R
    Gait Posture; 2014; 40(1):26-31. PubMed ID: 24618371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THE EFFECT OF STEP RATE MANIPULATION ON FOOT STRIKE PATTERN OF LONG DISTANCE RUNNERS.
    Allen DJ; Heisler H; Mooney J; Kring R
    Int J Sports Phys Ther; 2016 Feb; 11(1):54-63. PubMed ID: 26900500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A test of the metabolic cost of cushioning hypothesis during unshod and shod running.
    Tung KD; Franz JR; Kram R
    Med Sci Sports Exerc; 2014 Feb; 46(2):324-9. PubMed ID: 24441213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term changes in running mechanics and foot strike pattern after introduction to minimalistic footwear.
    Willson JD; Bjorhus JS; Williams DS; Butler RJ; Porcari JP; Kernozek TW
    PM R; 2014 Jan; 6(1):34-43; quiz 43. PubMed ID: 23999160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shoe feature recommendations for different running levels: A Delphi study.
    Honert EC; Mohr M; Lam WK; Nigg S
    PLoS One; 2020; 15(7):e0236047. PubMed ID: 32673375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.