BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 2846570)

  • 1. Studies on the electron transfer pathway, topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase.
    Krishnamoorthy G; Hinkle PC
    J Biol Chem; 1988 Nov; 263(33):17566-75. PubMed ID: 2846570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles.
    Kotlyar AB; Sled VD; Burbaev DS; Moroz IA; Vinogradov AD
    FEBS Lett; 1990 May; 264(1):17-20. PubMed ID: 2159893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pathway of electron transfer in NADH:Q oxidoreductase.
    van Belzen R; Albracht SP
    Biochim Biophys Acta; 1989 May; 974(3):311-20. PubMed ID: 2499359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-sulfur N-1 clusters studied in NADH-ubiquinone oxidoreductase and in soluble NADH dehydrogenase.
    Ohnishi T; Blum H; Galante YM; Hatefi Y
    J Biol Chem; 1981 Sep; 256(17):9216-20. PubMed ID: 6267066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of rotenone-insensitive reduction of quinones by mitochondrial NADH:ubiquinone reductase. The high affinity binding of NAD+ and NADH to the reduced enzyme form.
    Cénas NK; Bironaité DA; Kulys JJ
    FEBS Lett; 1991 Jun; 284(2):192-4. PubMed ID: 1905649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of some thermodynamic properties of iron-sulphur centres in site I of mitochondria.
    Ingledew WJ; Ohnishi T
    Biochem J; 1980 Jan; 186(1):111-7. PubMed ID: 6245637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analogue of ubiquinone which inhibits respiration by binding to the iron-sulfur protein of the cytochrome b-c1 segment of the mitochondrial respiratory chain.
    Bowyer JR; Edwards CA; Ohnishi T; Trumpower BL
    J Biol Chem; 1982 Jul; 257(14):8321-30. PubMed ID: 6282879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the NADH-menaquinone oxidoreductase segment of the respiratory chain in Thermus thermophilus HB-8.
    Meinhardt SW; Wang DC; Hon-nami K; Yagi T; Oshima T; Ohnishi T
    J Biol Chem; 1990 Jan; 265(3):1360-8. PubMed ID: 2153129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc1 complex.
    von Jagow G; Ljungdahl PO; Graf P; Ohnishi T; Trumpower BL
    J Biol Chem; 1984 May; 259(10):6318-26. PubMed ID: 6327677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes.
    Herweijer MA; Berden JA; Kemp A; Slater EC
    Biochim Biophys Acta; 1985 Aug; 809(1):81-9. PubMed ID: 2862915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate].
    Kotliar AB
    Biokhimiia; 1990 Feb; 55(2):195-200. PubMed ID: 2111181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of iron-sulfur center 2 in electron transport and energy conservation in the NADH-ubiquinone segment of the respiratory chain in Paracoccus denitrificans.
    Meijer EM; Wever R; Stouthamer AH
    Eur J Biochem; 1977 Dec; 81(2):267-75. PubMed ID: 202453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of iron-sulfur clusters in rat liver submitochondrial particles by electron paramagnetic resonance spectroscopy. Alterations produced by chronic ethanol consumption.
    Thayer WS; Ohnishi T; Rubin E
    Biochim Biophys Acta; 1980 Jun; 591(1):22-36. PubMed ID: 6248107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of electron transfer by 3-alkyl-2-hydroxy-1,4-naphthoquinones in the ubiquinol-cytochrome c oxidoreductases of Rhodopseudomonas sphaeroides and mammalian mitochondria. Interaction with a ubiquinone-binding site and the Rieske iron-sulfur cluster.
    Matsuura K; Bowyer JR; Ohnishi T; Dutton PL
    J Biol Chem; 1983 Feb; 258(3):1571-9. PubMed ID: 6296106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DCCD sensitivity of electron and proton transfer by NADH: ubiquinone oxidoreductase in bovine heart submitochondrial particles--a thermodynamic approach.
    Vuokila PT; Hassinen IE
    Biochim Biophys Acta; 1989 May; 974(2):219-22. PubMed ID: 2540836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hysteretic interaction of NADH and Mg2+ with mammalian NADH:CoQ reductase from beef heart.
    Tushurashvili PR; Dekanosidze NZ; Inasaridze NP; Kekelidze TN; Tsartsidze MA; Lomsadze BA
    FEBS Lett; 1989 Feb; 244(2):268-70. PubMed ID: 2493393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rotenone-insensitive reduction of quinones and nitrocompounds by mitochondrial NADH:ubiquinone reductase.
    Bironaite DA; Cenas NK; Kulys JJ
    Biochim Biophys Acta; 1991 Oct; 1060(2):203-9. PubMed ID: 1932041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.