BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28466187)

  • 1. Water-Wisteria as an ideal plant to study heterophylly in higher aquatic plants.
    Li G; Hu S; Yang J; Schultz EA; Clarke K; Hou H
    Plant Cell Rep; 2017 Aug; 36(8):1225-1236. PubMed ID: 28466187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of an Agrobacterium mediated transformation protocol for the detection of cytokinin in the heterophyllous plant Hygrophila difformis (Acanthaceae).
    Li G; Hu S; Yang J; Zhao X; Kimura S; Schultz EA; Hou H
    Plant Cell Rep; 2020 Jun; 39(6):737-750. PubMed ID: 32146519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SHOOT MERISTEMLESS participates in the heterophylly of Hygrophila difformis (Acanthaceae).
    Li G; Yang J; Chen Y; Zhao X; Chen Y; Kimura S; Hu S; Hou H
    Plant Physiol; 2022 Oct; 190(3):1777-1791. PubMed ID: 35984299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Do Plants and Phytohormones Accomplish Heterophylly, Leaf Phenotypic Plasticity, in Response to Environmental Cues.
    Nakayama H; Sinha NR; Kimura S
    Front Plant Sci; 2017; 8():1717. PubMed ID: 29046687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of the Morphological Plasticity Induced by Phytohormones and the Environment in Plants.
    Li G; Hu S; Zhao X; Kumar S; Li Y; Yang J; Hou H
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33466729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaves may function as temperature sensors in the heterophylly of Rorippa aquatica (Brassicaceae).
    Nakayama H; Kimura S
    Plant Signal Behav; 2015; 10(12):e1091909. PubMed ID: 26367499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterophylly: Phenotypic Plasticity of Leaf Shape in Aquatic and Amphibious Plants.
    Li G; Hu S; Hou H; Kimura S
    Plants (Basel); 2019 Oct; 8(10):. PubMed ID: 31623228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche palustris L.
    Koga H; Kojima M; Takebayashi Y; Sakakibara H; Tsukaya H
    Plant Cell; 2021 Oct; 33(10):3272-3292. PubMed ID: 34312675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant
    Horiguchi G; Nemoto K; Yokoyama T; Hirotsu N
    AoB Plants; 2019 Apr; 11(2):plz009. PubMed ID: 30911367
    [No Abstract]   [Full Text] [Related]  

  • 10. The ABA-mediated switch between submersed and emersed life-styles in aquatic macrophytes.
    Wanke D
    J Plant Res; 2011 Jul; 124(4):467-75. PubMed ID: 21674229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus.
    Kim J; Joo Y; Kyung J; Jeon M; Park JY; Lee HG; Chung DS; Lee E; Lee I
    PLoS Genet; 2018 Feb; 14(2):e1007208. PubMed ID: 29447166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Functional Significance and Fitness Consequences of Heterophylly.
    Winn AA
    Int J Plant Sci; 1999 Nov; 160(S6):S113-S121. PubMed ID: 10572026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic Architecture of Heterophylly: Single and Multi-Leaf Genome-Wide Association Mapping in
    Zhu X; Sun F; Sang M; Ye M; Bo W; Dong A; Wu R
    Front Plant Sci; 2022; 13():870876. PubMed ID: 35783952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chromosome-level genome assembly for the amphibious plant Rorippa aquatica reveals its allotetraploid origin and mechanisms of heterophylly upon submergence.
    Sakamoto T; Ikematsu S; Nakayama H; Mandáková T; Gohari G; Sakamoto T; Li G; Hou H; Matsunaga S; Lysak MA; Kimura S
    Commun Biol; 2024 Apr; 7(1):431. PubMed ID: 38637665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf Cell Morphology Alternation in Response to Environmental Signals in
    Sakamoto T; Ikematsu S; Namie K; Hou H; Li G; Kimura S
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimorphic Leaf Development of the Aquatic Plant
    Koga H; Doll Y; Hashimoto K; Toyooka K; Tsukaya H
    Front Plant Sci; 2020; 11():269. PubMed ID: 32211013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A developmental model for branching morphogenesis of lake cress compound leaf.
    Nakamasu A; Nakayama H; Nakayama N; Suematsu NJ; Kimura S
    PLoS One; 2014; 9(11):e111615. PubMed ID: 25375102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterophylly Quantitative Trait Loci Respond to Salt Stress in the Desert Tree
    Fu Y; Li F; Mu S; Jiang L; Ye M; Wu R
    Front Plant Sci; 2021; 12():692494. PubMed ID: 34335660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Light response of Wisteria sinensis leaves physiological parameters under different soil moisture conditions].
    Xia JB; Zhang GC; Liu G; Han W; Chen J; Liu X
    Ying Yong Sheng Tai Xue Bao; 2007 Jan; 18(1):30-4. PubMed ID: 17396495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QTL and candidate genes for heterophylly in soybean based on two populations of recombinant inbred lines.
    Chen Q; Liu B; Ai L; Yan L; Lin J; Shi X; Zhao H; Wei Y; Feng Y; Liu C; Yang C; Zhang M
    Front Plant Sci; 2022; 13():961619. PubMed ID: 36051289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.