BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

617 related articles for article (PubMed ID: 28466274)

  • 21. Oligodendrogenesis from neural stem cells: perspectives for remyelinating strategies.
    Grade S; Bernardino L; Malva JO
    Int J Dev Neurosci; 2013 Nov; 31(7):692-700. PubMed ID: 23340483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promoting remyelination in multiple sclerosis: current drugs and future prospects.
    Kremer D; Küry P; Dutta R
    Mult Scler; 2015 Apr; 21(5):541-9. PubMed ID: 25623245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The prospect of stem cells as multi-faceted purveyors of immune modulation, repair and regeneration in multiple sclerosis.
    Payne N; Siatskas C; Barnard A; Bernard CC
    Curr Stem Cell Res Ther; 2011 Mar; 6(1):50-62. PubMed ID: 20955155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adult mesenchymal stem cell therapy for myelin repair in multiple sclerosis.
    Rivera FJ; Aigner L
    Biol Res; 2012; 45(3):257-68. PubMed ID: 23283435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of endogenous neural stem cells for multiple sclerosis therapy.
    Michailidou I; de Vries HE; Hol EM; van Strien ME
    Front Neurosci; 2014; 8():454. PubMed ID: 25653584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo.
    Najm FJ; Madhavan M; Zaremba A; Shick E; Karl RT; Factor DC; Miller TE; Nevin ZS; Kantor C; Sargent A; Quick KL; Schlatzer DM; Tang H; Papoian R; Brimacombe KR; Shen M; Boxer MB; Jadhav A; Robinson AP; Podojil JR; Miller SD; Miller RH; Tesar PJ
    Nature; 2015 Jun; 522(7555):216-20. PubMed ID: 25896324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remyelination in multiple sclerosis: realizing a long-standing challenge.
    Aharoni R
    Expert Rev Neurother; 2015; 15(12):1369-72. PubMed ID: 26558886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple sclerosis - remyelination failure as a cause of disease progression.
    Hagemeier K; Brück W; Kuhlmann T
    Histol Histopathol; 2012 Mar; 27(3):277-87. PubMed ID: 22237705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunomodulation neuroprotection and remyelination - the fundamental therapeutic effects of glatiramer acetate: a critical review.
    Aharoni R
    J Autoimmun; 2014 Nov; 54():81-92. PubMed ID: 24934599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Migration and remyelination by oligodendrocyte progenitor cells transplanted adjacent to focal areas of spinal cord inflammation.
    Wang Y; Piao JH; Larsen EC; Kondo Y; Duncan ID
    J Neurosci Res; 2011 Nov; 89(11):1737-46. PubMed ID: 21793039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scutellarin Alleviates Behavioral Deficits in a Mouse Model of Multiple Sclerosis, Possibly Through Protecting Neural Stem Cells.
    Wang WW; Lu L; Bao TH; Zhang HM; Yuan J; Miao W; Wang SF; Xiao ZC
    J Mol Neurosci; 2016 Feb; 58(2):210-20. PubMed ID: 26514969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuronal injury in chronic CNS inflammation.
    Zindler E; Zipp F
    Best Pract Res Clin Anaesthesiol; 2010 Dec; 24(4):551-62. PubMed ID: 21619866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF.
    Laterza C; Merlini A; De Feo D; Ruffini F; Menon R; Onorati M; Fredrickx E; Muzio L; Lombardo A; Comi G; Quattrini A; Taveggia C; Farina C; Cattaneo E; Martino G
    Nat Commun; 2013; 4():2597. PubMed ID: 24169527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pathogenesis and basis for treatment in multiple sclerosis.
    Compston A
    Clin Neurol Neurosurg; 2004 Jun; 106(3):246-8. PubMed ID: 15177777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Induced Stem Cells as a Novel Multiple Sclerosis Therapy.
    Xie C; Liu YQ; Guan YT; Zhang GX
    Curr Stem Cell Res Ther; 2016; 11(4):313-20. PubMed ID: 25732737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TGFβ1 transduction enhances immunomodulatory capacity of neural stem cells in experimental autoimmune encephalomyelitis.
    Xie C; Li X; Zhou X; Li Z; Zhang Y; Zhao L; Hao Y; Zhang GX; Guan Y
    Brain Behav Immun; 2018 Mar; 69():283-295. PubMed ID: 29203425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell replacement therapy with stem cells in multiple sclerosis, a systematic review.
    Christodoulou MV; Petkou E; Atzemoglou N; Gkorla E; Karamitrou A; Simos YV; Bellos S; Bekiari C; Kouklis P; Konitsiotis S; Vezyraki P; Peschos D; Tsamis KI
    Hum Cell; 2024 Jan; 37(1):9-53. PubMed ID: 37985645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stem Cell Therapy for Multiple Sclerosis.
    Genc B; Bozan HR; Genc S; Genc K
    Adv Exp Med Biol; 2019; 1084():145-174. PubMed ID: 30039439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mesenchymal stem cells enhance the engraftment and myelinating ability of allogeneic oligodendrocyte progenitors in dysmyelinated mice.
    Cristofanilli M; Harris VK; Zigelbaum A; Goossens AM; Lu A; Rosenthal H; Sadiq SA
    Stem Cells Dev; 2011 Dec; 20(12):2065-76. PubMed ID: 21299379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential of Nano-Engineered Stem Cells in the Treatment of Multiple Sclerosis: A Comprehensive Review.
    Ghosh S; Bhatti GK; Sharma PK; Kandimalla R; Mastana SS; Bhatti JS
    Cell Mol Neurobiol; 2023 Dec; 44(1):6. PubMed ID: 38104307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.