BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 28466285)

  • 1. Magneto-Hydrodynamic Fractionation (MHF) for continuous and sheathless sorting of high-concentration paramagnetic microparticles.
    Kumar V; Rezai P
    Biomed Microdevices; 2017 Jun; 19(2):39. PubMed ID: 28466285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sheathless and high throughput sorting of paramagnetic microparticles in a magneto-hydrodynamic microfluidic device.
    Kumar V; Rezai P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():473-476. PubMed ID: 28268374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles.
    Zhang J; Yan S; Yuan D; Zhao Q; Tan SH; Nguyen NT; Li W
    Lab Chip; 2016 Oct; 16(20):3947-3956. PubMed ID: 27722618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sheathless Inertial Focusing Chip Combining a Spiral Channel with Periodic Expansion Structures for Efficient and Stable Particle Sorting.
    Gou Y; Zhang S; Sun C; Wang P; You Z; Yalikun Y; Tanaka Y; Ren D
    Anal Chem; 2020 Jan; 92(2):1833-1841. PubMed ID: 31858787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An instrument for sorting of magnetic microparticles in a magnetic field gradient.
    Espy MA; Sandin H; Carr C; Hanson CJ; Ward MD; Kraus RH
    Cytometry A; 2006 Nov; 69(11):1132-42. PubMed ID: 17051580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X; Liedert C; Liedert R; Papautsky I
    Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device.
    Del Giudice F; Madadi H; Villone MM; D'Avino G; Cusano AM; Vecchione R; Ventre M; Maffettone PL; Netti PA
    Lab Chip; 2015 Apr; 15(8):1912-22. PubMed ID: 25732596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microparticles manipulation and enhancement of their separation in pinched flow fractionation by insulator-based dielectrophoresis.
    Khashei H; Latifi H; Seresht MJ; Ghasemi AH
    Electrophoresis; 2016 Mar; 37(5-6):775-85. PubMed ID: 26685118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels.
    Sim TS; Kwon K; Park JC; Lee JG; Jung HI
    Lab Chip; 2011 Jan; 11(1):93-9. PubMed ID: 20957273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic particle sorting utilizing inertial lift force.
    Nieuwstadt HA; Seda R; Li DS; Fowlkes JB; Bull JL
    Biomed Microdevices; 2011 Feb; 13(1):97-105. PubMed ID: 20865451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable hydrodynamic focusing with dual-neodymium magnet-based microfluidic separation device.
    Al-Zareer M
    Med Biol Eng Comput; 2022 Jan; 60(1):47-60. PubMed ID: 34693497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sheathless size-based acoustic particle separation.
    Guldiken R; Jo MC; Gallant ND; Demirci U; Zhe J
    Sensors (Basel); 2012; 12(1):905-22. PubMed ID: 22368502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells.
    Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH
    Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Single-Layer Microchannel for Continuous Sheathless Single-Stream Particle Inertial Focusing.
    Zhang Y; Zhang J; Tang F; Li W; Wang X
    Anal Chem; 2018 Feb; 90(3):1786-1794. PubMed ID: 29297226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sheath-assisted versus sheathless dielectrophoretic particle separation.
    Dalili A; Hoorfar M
    Electrophoresis; 2021 Aug; 42(16):1570-1577. PubMed ID: 34196426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification.
    Huh D; Bahng JH; Ling Y; Wei HH; Kripfgans OD; Fowlkes JB; Grotberg JB; Takayama S
    Anal Chem; 2007 Feb; 79(4):1369-76. PubMed ID: 17297936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic curved-channel centrifuge for solution exchange of target microparticles and their simultaneous separation from bacteria.
    Bayat P; Rezai P
    Soft Matter; 2018 Jul; 14(26):5356-5363. PubMed ID: 29781012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-flow fractionation and hydrodynamic chromatography on a microfluidic chip.
    Shendruk TN; Tahvildari R; Catafard NM; Andrzejewski L; Gigault C; Todd A; Gagne-Dumais L; Slater GW; Godin M
    Anal Chem; 2013 Jun; 85(12):5981-8. PubMed ID: 23650976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.