These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28466944)

  • 1. How cube-like must magnetic nanoparticles be to modify their self-assembly?
    Donaldson JG; Linse P; Kantorovich SS
    Nanoscale; 2017 May; 9(19):6448-6462. PubMed ID: 28466944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle Shape Influences the Magnetic Response of Ferro-Colloids.
    Donaldson JG; Pyanzina ES; Kantorovich SS
    ACS Nano; 2017 Aug; 11(8):8153-8166. PubMed ID: 28763187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology and dynamics of colloidal superballs.
    Royer JR; Burton GL; Blair DL; Hudson SD
    Soft Matter; 2015 Jul; 11(28):5656-65. PubMed ID: 26078036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional self-assembly of permanently magnetised nanocubes in quasi two dimensional layers.
    Donaldson JG; Kantorovich SS
    Nanoscale; 2015 Feb; 7(7):3217-28. PubMed ID: 25619990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal packings of superballs.
    Jiao Y; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041309. PubMed ID: 19518226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of solid-solid transitions in 3D crystals of colloidal superballs.
    Meijer JM; Pal A; Ouhajji S; Lekkerkerker HN; Philipse AP; Petukhov AV
    Nat Commun; 2017 Feb; 8():14352. PubMed ID: 28186101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinctive features arising in maximally random jammed packings of superballs.
    Jiao Y; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041304. PubMed ID: 20481714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous in-flight assembly of magnetic nanoparticles into macroscopic chains.
    Balcells L; Stanković I; Konstantinović Z; Alagh A; Fuentes V; López-Mir L; Oró J; Mestres N; García C; Pomar A; Martínez B
    Nanoscale; 2019 Aug; 11(30):14194-14202. PubMed ID: 31198921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-sensitive crystallization in colloidal superball fluids.
    Rossi L; Soni V; Ashton DJ; Pine DJ; Philipse AP; Chaikin PM; Dijkstra M; Sacanna S; Irvine WT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5286-90. PubMed ID: 25870301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-organization in dipolar cube fluids constrained by competing anisotropies.
    Rossi L; Donaldson JG; Meijer JM; Petukhov AV; Kleckner D; Kantorovich SS; Irvine WTM; Philipse AP; Sacanna S
    Soft Matter; 2018 Feb; 14(7):1080-1087. PubMed ID: 29372225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scattering from colloidal cubic silica shells: Part II, static structure factors and osmotic equation of state.
    Dekker F; Kuipers BWM; González García Á; Tuinier R; Philipse AP
    J Colloid Interface Sci; 2020 Jul; 571():267-274. PubMed ID: 32203763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-2d fluids of dipolar superballs in an external field.
    Linse P
    Soft Matter; 2015 May; 11(19):3900-12. PubMed ID: 25869763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase behavior of colloidal superballs: shape interpolation from spheres to cubes.
    Batten RD; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061105. PubMed ID: 20866376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural ordering of self-assembled clusters with competing interactions: transition from faceted to spherical clusters.
    Galván-Moya JE; Nelissen K; Peeters FM
    Langmuir; 2015 Jan; 31(3):917-24. PubMed ID: 25548830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground-state structures and structural transitions in a monolayer of magnetic dipolar particles in the presence of an external magnetic field.
    Danilov V; Prokopyeva T; Kantorovich S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061408. PubMed ID: 23367951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behaviour of magnetic Janus-like colloids.
    Novak EV; Pyanzina ES; Kantorovich SS
    J Phys Condens Matter; 2015 Jun; 27(23):234102. PubMed ID: 26010700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of colloidal particles into strings in a homogeneous external electric or magnetic field.
    Smallenburg F; Vutukuri HR; Imhof A; van Blaaderen A; Dijkstra M
    J Phys Condens Matter; 2012 Nov; 24(46):464113. PubMed ID: 23114053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembly of Crystalline Structures of Magnetic Core-Shell Nanoparticles for Fabrication of Nanostructured Materials.
    Xue X; Wang J; Furlani EP
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22515-24. PubMed ID: 26389965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay of particle shape and suspension properties: a study of cube-like particles.
    Audus DJ; Hassan AM; Garboczi EJ; Douglas JF
    Soft Matter; 2015 May; 11(17):3360-6. PubMed ID: 25797369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.