BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28467025)

  • 21. Two new zinc(II) coordination complexes with helix characteristics showing both interpenetration and self-catenation features: a platform for the synthesis of chiral and catenated structures assembled by length-modulated dicarboxylates.
    Wang Y; Qi Y; Blatov VA; Zheng J; Li Q; Zhang C
    Dalton Trans; 2014 Oct; 43(40):15151-8. PubMed ID: 25182167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enantioseparation of Racemic Flurbiprofen by Aqueous Two-Phase Extraction With Binary Chiral Selectors of L-dioctyl Tartrate and L-tryptophan.
    Chen Z; Zhang W; Wang L; Fan H; Wan Q; Wu X; Tang X; Tang JZ
    Chirality; 2015 Sep; 27(9):650-7. PubMed ID: 26179618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A highly efficient chiral sensing platform for tryptophan isomers based on a coordination self-assembly.
    Lei P; Zhou Y; Zhang G; Zhang Y; Zhang C; Hong S; Yang Y; Dong C; Shuang S
    Talanta; 2019 Apr; 195():306-312. PubMed ID: 30625547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chiral CE of aromatic amino acids by ligand-exchange with zinc(II)-L-lysine complex.
    Qi L; Han Y; Zuo M; Chen Y
    Electrophoresis; 2007 Aug; 28(15):2629-34. PubMed ID: 17600842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chiral recognition of peptide enantiomers by cinchona alkaloid derived chiral selectors: mechanistic investigations by liquid chromatography, NMR spectroscopy, and molecular modeling.
    Czerwenka C; Zhang MM; Kählig H; Maier NM; Lipkowitz KB; Lindner W
    J Org Chem; 2003 Oct; 68(22):8315-27. PubMed ID: 14575453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insight into the Effects of Chiral Diphosphine Ligands on the Structure and Optical Properties of the Au
    Zhou J; Li T; Li Q; Zheng P; Yang S; Chai J; Zhu M
    Inorg Chem; 2022 May; 61(17):6493-6499. PubMed ID: 35436089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of new chiral ligand exchange capillary electrophoresis system with amino acid ionic liquids ligands and its application in studying the kinetics of L-amino acid oxidase.
    Sun B; Mu X; Qi L
    Anal Chim Acta; 2014 Apr; 821():97-102. PubMed ID: 24703219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Helical nanostructures self-assembled from optically active phthalocyanine derivatives bearing four optically active binaphthyl moieties: effect of metal-ligand coordination on the morphology, dimension, and helical pitch of self-assembled nanostructures.
    Wu L; Wang Q; Lu J; Bian Y; Jiang J; Zhang X
    Langmuir; 2010 May; 26(10):7489-97. PubMed ID: 20218550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of chiral recognition characteristics of metal and proton complexes of di-o-benzoyl-tartaric acid dibutyl ester and L-tryptophan in the gas phase.
    Lu HJ; Guo YL
    J Am Soc Mass Spectrom; 2003 Jun; 14(6):571-80. PubMed ID: 12781458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enantioseparation of aromatic amino acids using CEC monolith with novel chiral selector, N-methacryloyl-L-histidine methyl ester.
    Aydoğan C; Yılmaz F; Cimen D; Uzun L; Denizli A
    Electrophoresis; 2013 Jul; 34(13):1908-14. PubMed ID: 23592237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enantioseparation of dansyl amino acids by ligand-exchange capillary electrophoresis with zinc(II)-L-phenylalaninamide complex.
    Qi L; Yang G
    J Sep Sci; 2009 Sep; 32(18):3209-14. PubMed ID: 19705370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-Triggered Reversible Supracolloidal Self-Assembly of Precision Gold Nanoclusters.
    Rival JV; Nonappa ; Shibu ES
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14569-14577. PubMed ID: 32176481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface mediated assembly of small, metastable gold nanoclusters.
    Pettibone JM; Osborn WA; Rykaczewski K; Talin AA; Bonevich JE; Hudgens JW; Allendorf MD
    Nanoscale; 2013 Jul; 5(14):6558-66. PubMed ID: 23759958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong fluorescence-detected two-photon circular dichroism of chiral gold nanoclusters.
    Pniakowska A; Samoć M; Olesiak-Bańska J
    Nanoscale; 2023 May; 15(19):8597-8602. PubMed ID: 37186146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phospholipid-lysozyme coating for chiral separation in capillary electrophoresis.
    Bo T; Wiedmer SK; Riekkola ML
    Electrophoresis; 2004 Jun; 25(12):1784-91. PubMed ID: 15213976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic basis of chiral recognition in a DNA aptamer.
    Lin PH; Tong SJ; Louis SR; Chang Y; Chen WY
    Phys Chem Chem Phys; 2009 Nov; 11(42):9744-50. PubMed ID: 19851552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bicarbonate insertion triggered self-assembly of chiral octa-gold nanoclusters into helical superstructures in the crystalline state.
    Si WD; Sheng K; Zhang C; Wang Z; Zhang SS; Dou JM; Feng L; Gao ZY; Tung CH; Sun D
    Chem Sci; 2022 Sep; 13(35):10523-10531. PubMed ID: 36277632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Versatile method for chiral recognition by the quartz crystal microbalance: chiral mandelic acid as the detection model.
    Guo HS; Kim JM; Kim SJ; Chang SM; Kim WS
    Langmuir; 2009 Jan; 25(2):648-52. PubMed ID: 19105607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enantiomer separation of amino acids by complexation with chiral reference compounds and high-field asymmetric waveform ion mobility spectrometry: preliminary results and possible limitations.
    Mie A; Jörntén-Karlsson M; Axelsson BO; Ray A; Reimann CT
    Anal Chem; 2007 Apr; 79(7):2850-8. PubMed ID: 17326611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.