These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28467353)

  • 1. Assessing Scaffold Diversity of Kinase Inhibitors Using Alternative Scaffold Concepts and Estimating the Scaffold Hopping Potential for Different Kinases.
    Dimova D; Bajorath J
    Molecules; 2017 May; 22(5):. PubMed ID: 28467353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Biological Activities to Different Types of Molecular Scaffolds: Exemplary Application to Protein Kinase Inhibitors.
    Dimova D; Bajorath J
    Methods Mol Biol; 2018; 1825():327-337. PubMed ID: 30334211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current compound coverage of the kinome.
    Hu Y; Furtmann N; Bajorath J
    J Med Chem; 2015 Jan; 58(1):30-40. PubMed ID: 25051177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome.
    Miljković F; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2019 Jun; 33(6):559-572. PubMed ID: 30915709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the scaffold universe of kinase inhibitors.
    Hu Y; Bajorath J
    J Med Chem; 2015 Jan; 58(1):315-32. PubMed ID: 25192260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic assessment of structure-promiscuity relationships between different types of kinase inhibitors.
    Hu H; Bajorath J
    Bioorg Med Chem; 2021 Jul; 41():116226. PubMed ID: 34082305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of potential Toxoplasma gondii CDPK1 inhibitors with new scaffolds based on the combination of QSAR and scaffold-hopping method with in vitro validation.
    Zhang P; Jia L; Tian Y; Xi L; Duan R; Chen X; Xiao J; Yao X; Lan J; Li S
    Chem Biol Drug Des; 2020 May; 95(5):476-484. PubMed ID: 31436911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Scaffold Hopping.
    Hu Y; Stumpfe D; Bajorath J
    J Med Chem; 2017 Feb; 60(4):1238-1246. PubMed ID: 28001064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Data-Driven Assessment of Non-Kinase Targets of Inhibitors of the Human Kinome.
    Mobasher M; Vogt M; Xerxa E; Bajorath J
    Biomolecules; 2024 Feb; 14(3):. PubMed ID: 38540679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.
    Stumpfe D; Dimova D; Bajorath J
    Bioorg Med Chem; 2015 Jul; 23(13):3183-91. PubMed ID: 25982076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring structure-promiscuity relationships using dual-site promiscuity cliffs and corresponding single-site analogs.
    Hu H; Bajorath J
    Bioorg Med Chem; 2020 Jan; 28(1):115238. PubMed ID: 31818631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying representative kinases for inhibitor evaluation via systematic analysis of compound-based target relationships.
    Laufkötter O; Laufer S; Bajorath J
    Eur J Med Chem; 2020 Oct; 204():112641. PubMed ID: 32745818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is scaffold hopping a reliable indicator for the ability of computational methods to identify structurally diverse active compounds?
    Dimova D; Bajorath J
    J Comput Aided Mol Des; 2017 Jul; 31(7):603-608. PubMed ID: 28623485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Scaffold-Hopping Strategy toward the Identification of Inhibitors of Cyclin G Associated Kinase.
    Wouters R; Tian J; Herdewijn P; De Jonghe S
    ChemMedChem; 2019 Jan; 14(2):237-254. PubMed ID: 30548533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaffold hopping towards potent and selective JAK3 inhibitors: discovery of novel C-5 substituted pyrrolopyrazines.
    de Vicente J; Lemoine R; Bartlett M; Hermann JC; Hekmat-Nejad M; Henningsen R; Jin S; Kuglstatter A; Li H; Lovey AJ; Menke J; Niu L; Patel V; Petersen A; Setti L; Shao A; Tivitmahaisoon P; Vu MD; Soth M
    Bioorg Med Chem Lett; 2014 Nov; 24(21):4969-75. PubMed ID: 25262541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffold mining of kinase hinge binders in crystal structure database.
    Xing L; Rai B; Lunney EA
    J Comput Aided Mol Des; 2014 Jan; 28(1):13-23. PubMed ID: 24375079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the target differentiation potential of imidazole-based protein kinase inhibitors.
    Dimova D; Iyer P; Vogt M; Totzke F; Kubbutat MH; Schächtele C; Laufer S; Bajorath J
    J Med Chem; 2012 Dec; 55(24):11067-71. PubMed ID: 23210446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promiscuity analysis of a kinase panel screen with designated p38 alpha inhibitors.
    González-Medina M; Miljković F; Haase GS; Drueckes P; Trappe J; Laufer S; Bajorath J
    Eur J Med Chem; 2020 Feb; 187():112004. PubMed ID: 31881458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure- and Similarity-Based Survey of Allosteric Kinase Inhibitors, Activators, and Closely Related Compounds.
    Laufkötter O; Hu H; Miljković F; Bajorath J
    J Med Chem; 2022 Jan; 65(2):922-934. PubMed ID: 33476146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of novel CDK inhibitors via scaffold hopping from CAN508.
    Jing L; Tang Y; Xiao Z
    Bioorg Med Chem Lett; 2018 May; 28(8):1386-1391. PubMed ID: 29550093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.