These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28467613)

  • 21. Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects.
    McInnis JP; Delferro M; Marks TJ
    Acc Chem Res; 2014 Aug; 47(8):2545-57. PubMed ID: 25075755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manganese Electrocatalysts with Bulky Bipyridine Ligands: Utilizing Lewis Acids To Promote Carbon Dioxide Reduction at Low Overpotentials.
    Sampson MD; Kubiak CP
    J Am Chem Soc; 2016 Feb; 138(4):1386-93. PubMed ID: 26745814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Thiourea Tether in the Second Coordination Sphere as a Binding Site for CO
    Haviv E; Azaiza-Dabbah D; Carmieli R; Avram L; Martin JML; Neumann R
    J Am Chem Soc; 2018 Oct; 140(39):12451-12456. PubMed ID: 30207468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneous Aqueous CO
    Sinha S; Sonea A; Shen W; Hanson SS; Warren JJ
    Inorg Chem; 2019 Aug; 58(16):10454-10461. PubMed ID: 31343871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microporous Polymelamine Framework Functionalized with Re(I) Tricarbonyl Complexes for CO
    Zappia S; Perju E; Bejan A; Coroaba A; Bossola F; Zeng J; Sassone D; Marin L; Destri S; Porzio W
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a Catalytic Active Site for Electrochemical CO2 Reduction with Mn(I)-Tricarbonyl Species.
    Agarwal J; Shaw TW; Schaefer HF; Bocarsly AB
    Inorg Chem; 2015 Jun; 54(11):5285-94. PubMed ID: 25968283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: eliminating dimerization and altering catalysis.
    Sampson MD; Nguyen AD; Grice KA; Moore CE; Rheingold AL; Kubiak CP
    J Am Chem Soc; 2014 Apr; 136(14):5460-71. PubMed ID: 24641545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photochemical Reduction of Low Concentrations of CO2 in a Porous Coordination Polymer with a Ruthenium(II)-CO Complex.
    Kajiwara T; Fujii M; Tsujimoto M; Kobayashi K; Higuchi M; Tanaka K; Kitagawa S
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2697-700. PubMed ID: 26800222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrocatalytic CO2 Reduction with a Homogeneous Catalyst in Ionic Liquid: High Catalytic Activity at Low Overpotential.
    Grills DC; Matsubara Y; Kuwahara Y; Golisz SR; Kurtz DA; Mello BA
    J Phys Chem Lett; 2014 Jun; 5(11):2033-8. PubMed ID: 26273891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical CO
    Sun C; Rotundo L; Garino C; Nencini L; Yoon SS; Gobetto R; Nervi C
    Chemphyschem; 2017 Nov; 18(22):3219-3229. PubMed ID: 28834058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrolyzed Triazine-Based Nanoporous Frameworks Enable Electrochemical CO
    Zhu X; Tian C; Wu H; He Y; He L; Wang H; Zhuang X; Liu H; Xia C; Dai S
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43588-43594. PubMed ID: 30482016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amphiphilic Polycarbonate Micellar Rhenium Catalysts for Efficient Photocatalytic CO
    Ren FY; Chen K; Qiu LQ; Chen JM; Darensbourg DJ; He LN
    Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202200751. PubMed ID: 35441773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene-immobilized monomeric bipyridine-Mx+ (Mx+ = Fe3+, Co2+, Ni2+, or Cu2+) complexes for electrocatalytic water oxidation.
    Zhou X; Zhang T; Abney CW; Li Z; Lin W
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18475-9. PubMed ID: 25347590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Hierarchical Bipyridine-Constructed Framework for Highly Efficient Carbon Dioxide Capture and Catalytic Conversion.
    Dai Z; Sun Q; Liu X; Guo L; Li J; Pan S; Bian C; Wang L; Hu X; Meng X; Zhao L; Deng F; Xiao FS
    ChemSusChem; 2017 Mar; 10(6):1186-1192. PubMed ID: 27860370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photo-reduction of CO2 Using a Rhenium Complex Covalently Supported on a Graphene/TiO2 Composite.
    Cui SC; Sun XZ; Liu JG
    ChemSusChem; 2016 Jul; 9(13):1698-703. PubMed ID: 27254666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Catalysts with Intramolecular Re-O Bond for Electrochemical Reduction of Carbon Dioxide.
    Rotundo L; Polyansky DE; Gobetto R; Grills DC; Fujita E; Nervi C; Manbeck GF
    Inorg Chem; 2020 Sep; 59(17):12187-12199. PubMed ID: 32804491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust Binding of Disulfide-Substituted Rhenium Bipyridyl Complexes for CO
    Cattaneo M; Guo F; Kelly HR; Videla PE; Kiefer L; Gebre S; Ge A; Liu Q; Wu S; Lian T; Batista VS
    Front Chem; 2020; 8():86. PubMed ID: 32117901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.
    Madhavan N; Jones CW; Weck M
    Acc Chem Res; 2008 Sep; 41(9):1153-65. PubMed ID: 18793027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of CO2 on a tricarbonyl rhenium(I) complex: modeling a catalytic cycle.
    Agarwal J; Johnson RP; Li G
    J Phys Chem A; 2011 Apr; 115(13):2877-81. PubMed ID: 21410231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metallosalen-Based Ionic Porous Polymers as Bifunctional Catalysts for the Conversion of CO
    Luo R; Chen Y; He Q; Lin X; Xu Q; He X; Zhang W; Zhou X; Ji H
    ChemSusChem; 2017 Apr; 10(7):1526-1533. PubMed ID: 28039942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.