These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28467613)

  • 41. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.
    Duan L; Wang L; Li F; Li F; Sun L
    Acc Chem Res; 2015 Jul; 48(7):2084-96. PubMed ID: 26131964
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Construction of a quaternary ammonium salt platform with different alkyl groups for antibacterial and biosensor applications.
    Lv X; Liu C; Song S; Qiao Y; Hu Y; Li P; Li Z; Sun S
    RSC Adv; 2018 Jan; 8(6):2941-2949. PubMed ID: 35541197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane.
    Zhang S; Kang P; Bakir M; Lapides AM; Dares CJ; Meyer TJ
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15809-14. PubMed ID: 26668386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Manganese Tricarbonyl Complexes with Asymmetric 2-Iminopyridine Ligands: Toward Decoupling Steric and Electronic Factors in Electrocatalytic CO
    Spall SJ; Keane T; Tory J; Cocker DC; Adams H; Fowler H; Meijer AJ; Hartl F; Weinstein JA
    Inorg Chem; 2016 Dec; 55(24):12568-12582. PubMed ID: 27989199
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CO2/ethylene oxide copolymerization and ligand variation for a highly active salen-cobalt(III) complex tethering 4 quaternary ammonium salts.
    Jeon JY; Lee JJ; Varghese JK; Na SJ; Sujith S; Go MJ; Lee J; Ok MA; Lee BY
    Dalton Trans; 2013 Jul; 42(25):9245-54. PubMed ID: 23104466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Positional Effect of an Immobilized Re Tricarbonyl Catalyst for CO
    Choate JC; Silva I; Hsu PC; Tran K; Marinescu SC
    ACS Appl Mater Interfaces; 2024 Sep; 16(38):50534-50549. PubMed ID: 39255361
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Developing new methods for the mono-end functionalization of living ring opening metathesis polymers.
    Kilbinger AF
    Chimia (Aarau); 2012; 66(3):99-103. PubMed ID: 22546252
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved molecular weight control in ring-opening metathesis polymerization (ROMP) reactions with ru-based olefin metathesis catalysts using N donors and acid: a kinetic and mechanistic investigation.
    Dunbar MA; Balof SL; LaBeaud LJ; Yu B; Lowe AB; Valente EJ; Schanz HJ
    Chemistry; 2009 Nov; 15(45):12435-46. PubMed ID: 19821457
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4.
    Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ
    ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Raman Spectroscopy as a Method to Investigate Catalytic Intermediates: CO2 Reducing [Re(Cl)(bpy-R)(CO)3] Catalyst.
    Kalläne SI; van Gastel M
    J Phys Chem A; 2016 Sep; 120(38):7465-74. PubMed ID: 27580084
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ring-opening metathesis polymerization of 18-e Cobalt(I)-containing norbornene and application as heterogeneous macromolecular catalyst in atom transfer radical polymerization.
    Yan Y; Zhang J; Wilbon P; Qiao Y; Tang C
    Macromol Rapid Commun; 2014 Nov; 35(21):1840-5. PubMed ID: 25250694
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrochemical CO
    Jiang C; Nichols AW; Walzer JF; Machan CW
    Inorg Chem; 2020 Feb; 59(3):1883-1892. PubMed ID: 31935070
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitrogen-containing polymers as a platform for CO
    Ponnurangam S; Chernyshova IV; Somasundaran P
    Adv Colloid Interface Sci; 2017 Jun; 244():184-198. PubMed ID: 27817802
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrocatalytic carbon dioxide reduction by using cationic pentamethylcyclopentadienyl-iridium complexes with unsymmetrically substituted bipyridine ligands.
    Sypaseuth FD; Matlachowski C; Weber M; Schwalbe M; Tzschucke CC
    Chemistry; 2015 Apr; 21(17):6564-71. PubMed ID: 25756194
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms for CO production from CO2 using reduced rhenium tricarbonyl catalysts.
    Agarwal J; Fujita E; Schaefer HF; Muckerman JT
    J Am Chem Soc; 2012 Mar; 134(11):5180-6. PubMed ID: 22364649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids.
    Smieja JM; Sampson MD; Grice KA; Benson EE; Froehlich JD; Kubiak CP
    Inorg Chem; 2013 Mar; 52(5):2484-91. PubMed ID: 23418912
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis.
    Wang C; Xie Z; deKrafft KE; Lin W
    J Am Chem Soc; 2011 Aug; 133(34):13445-54. PubMed ID: 21780787
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Activating a Low Overpotential CO2 Reduction Mechanism by a Strategic Ligand Modification on a Ruthenium Polypyridyl Catalyst.
    Johnson BA; Maji S; Agarwala H; White TA; Mijangos E; Ott S
    Angew Chem Int Ed Engl; 2016 Jan; 55(5):1825-9. PubMed ID: 26671836
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrocatalytic reduction of CO2 by thiophene-substituted rhenium(i) complexes and by their polymerized films.
    Sun C; Prosperini S; Quagliotto P; Viscardi G; Yoon SS; Gobetto R; Nervi C
    Dalton Trans; 2016 Oct; 45(37):14678-88. PubMed ID: 26800520
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO.
    Alfonso DR; Kauffman D; Matranga C
    J Chem Phys; 2016 May; 144(18):184705. PubMed ID: 27179498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.