BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28467631)

  • 21. C1A cysteine-proteases and their inhibitors in plants.
    Martínez M; Cambra I; González-Melendi P; Santamaría ME; Díaz I
    Physiol Plant; 2012 May; 145(1):85-94. PubMed ID: 22221156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SASP, a Senescence-Associated Subtilisin Protease, is involved in reproductive development and determination of silique number in Arabidopsis.
    Martinez DE; Borniego ML; Battchikova N; Aro EM; Tyystjärvi E; Guiamét JJ
    J Exp Bot; 2015 Jan; 66(1):161-74. PubMed ID: 25371504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant Proteases Involved in Regulated Cell Death.
    Zamyatnin AA
    Biochemistry (Mosc); 2015 Dec; 80(13):1701-15. PubMed ID: 26878575
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Serous borderline tumors of the ovary: a long-term follow-up study of 137 cases, including 18 with a micropapillary pattern and 20 with microinvasion.
    Prat J; De Nictolis M
    Am J Surg Pathol; 2002 Sep; 26(9):1111-28. PubMed ID: 12218568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation.
    Arnórsdóttir J; Kristjánsson MM; Ficner R
    FEBS J; 2005 Feb; 272(3):832-45. PubMed ID: 15670163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subtilisin-like proteases of the malaria parasite.
    Withers-Martinez C; Jean L; Blackman MJ
    Mol Microbiol; 2004 Jul; 53(1):55-63. PubMed ID: 15225303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cutting in the middleman: hidden substrates at the interface between proteases and plant development.
    Liu C; Moschou PN
    New Phytol; 2018 May; 218(3):916-922. PubMed ID: 28262953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide and molecular evolution analysis of the subtilase gene family in Vitis vinifera.
    Cao J; Han X; Zhang T; Yang Y; Huang J; Hu X
    BMC Genomics; 2014 Dec; 15(1):1116. PubMed ID: 25512249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Matrix metalloproteinases in plants: a brief overview.
    Marino G; Funk C
    Physiol Plant; 2012 May; 145(1):196-202. PubMed ID: 22084906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The two main endoproteases present in dark-induced senescent wheat leaves are distinct subtilisin-like proteases.
    Roberts IN; Passeron S; Barneix AJ
    Planta; 2006 Nov; 224(6):1437-47. PubMed ID: 16741746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases.
    Van de Ven WJ; Roebroek AJ; Van Duijnhoven HL
    Crit Rev Oncog; 1993; 4(2):115-36. PubMed ID: 8420571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel oxidatively stable subtilisin-like serine proteases from alkaliphilic Bacillus spp.: enzymatic properties, sequences, and evolutionary relationships.
    Saeki K; Okuda M; Hatada Y; Kobayashi T; Ito S; Takami H; Horikoshi K
    Biochem Biophys Res Commun; 2000 Dec; 279(2):313-9. PubMed ID: 11118284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [New subfamilies of subtilisins].
    Rudenskaia GN
    Bioorg Khim; 1994 May; 20(5):475-84. PubMed ID: 8053942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development.
    Ribeiro A; Akkermans AD; van Kammen A; Bisseling T; Pawlowski K
    Plant Cell; 1995 Jun; 7(6):785-94. PubMed ID: 7647567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arabidopsis PME17 Activity can be Controlled by Pectin Methylesterase Inhibitor4.
    Sénéchal F; Mareck A; Marcelo P; Lerouge P; Pelloux J
    Plant Signal Behav; 2015; 10(2):e983351. PubMed ID: 25826258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The controversies of silicon's role in plant biology.
    Coskun D; Deshmukh R; Sonah H; Menzies JG; Reynolds O; Ma JF; Kronzucker HJ; Bélanger RR
    New Phytol; 2019 Jan; 221(1):67-85. PubMed ID: 30007071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi.
    Field KJ; Pressel S
    New Phytol; 2018 Dec; 220(4):996-1011. PubMed ID: 29696662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Caspases in plants: metacaspase gene family in plant stress responses.
    Fagundes D; Bohn B; Cabreira C; Leipelt F; Dias N; Bodanese-Zanettini MH; Cagliari A
    Funct Integr Genomics; 2015 Nov; 15(6):639-49. PubMed ID: 26277721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant phytaspases and animal caspases: structurally unrelated death proteases with a common role and specificity.
    Chichkova NV; Tuzhikov AI; Taliansky M; Vartapetian AB
    Physiol Plant; 2012 May; 145(1):77-84. PubMed ID: 22182311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina.
    Li J; Yu L; Yang J; Dong L; Tian B; Yu Z; Liang L; Zhang Y; Wang X; Zhang K
    BMC Evol Biol; 2010 Mar; 10():68. PubMed ID: 20211028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.