These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 28467814)
81. Longitudinal MRI contrast enhanced monitoring of early tumour development with manganese chloride (MnCl2) and superparamagnetic iron oxide nanoparticles (SPIOs) in a CT1258 based in vivo model of prostate cancer. Sterenczak KA; Meier M; Glage S; Meyer M; Willenbrock S; Wefstaedt P; Dorsch M; Bullerdiek J; Murua Escobar H; Hedrich H; Nolte I BMC Cancer; 2012 Jul; 12():284. PubMed ID: 22784304 [TBL] [Abstract][Full Text] [Related]
82. Enhanced cellular uptake and long-term retention of chitosan-modified iron-oxide nanoparticles for MRI-based cell tracking. Bakhru SH; Altiok E; Highley C; Delubac D; Suhan J; Hitchens TK; Ho C; Zappe S Int J Nanomedicine; 2012; 7():4613-23. PubMed ID: 22942643 [TBL] [Abstract][Full Text] [Related]
83. Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. Zhang L; Zhou H; Belzile O; Thorpe P; Zhao D J Control Release; 2014 Jun; 183():114-23. PubMed ID: 24698945 [TBL] [Abstract][Full Text] [Related]
84. MRI tracking of macrophages labeled with glucan particles entrapping a water insoluble paramagnetic Gd-based agent. Figueiredo S; Cutrin JC; Rizzitelli S; De Luca E; Moreira JN; Geraldes CF; Aime S; Terreno E Mol Imaging Biol; 2013 Jun; 15(3):307-15. PubMed ID: 23179092 [TBL] [Abstract][Full Text] [Related]
85. Monitoring of impaired phagocytic function of Kupffer cells in an obstructive cholangitis rat model using superparamagnetic iron oxide MRI and contrast-enhanced ultrasound. Lee JH; Kim JH; Lee S; Han JK Acta Radiol; 2019 Apr; 60(4):407-414. PubMed ID: 30724596 [TBL] [Abstract][Full Text] [Related]
86. Multifunctional superparamagnetic nanoparticles conjugated with fluorescein-labeled designed ankyrin repeat protein as an efficient HER2-targeted probe in breast cancer. Li DL; Tan JE; Tian Y; Huang S; Sun PH; Wang M; Han YJ; Li HS; Wu HB; Zhang XM; Xu YK; Wang QS Biomaterials; 2017 Dec; 147():86-98. PubMed ID: 28938164 [TBL] [Abstract][Full Text] [Related]
87. Differentiation of reactive and tumor metastatic lymph nodes with diffusion-weighted and SPIO-enhanced MRI. Zhang F; Zhu L; Huang X; Niu G; Chen X Mol Imaging Biol; 2013 Feb; 15(1):40-7. PubMed ID: 22588595 [TBL] [Abstract][Full Text] [Related]
88. Role of Surface Chemistry in Mediating the Uptake of Ultrasmall Iron Oxide Nanoparticles by Cancer Cells. Narkhede AA; Sherwood JA; Antone A; Coogan KR; Bolding MS; Deb S; Bao Y; Rao SS ACS Appl Mater Interfaces; 2019 May; 11(19):17157-17166. PubMed ID: 31017392 [TBL] [Abstract][Full Text] [Related]
89. MRI tracking of autologous pancreatic progenitor-derived insulin-producing cells in monkeys. Zou C; Lu Y; Teng X; Wang S; Sun X; Huang F; Shu G; Huang X; Guo H; Chen Z; Zhang J; Zhang YA Sci Rep; 2017 May; 7(1):2505. PubMed ID: 28566744 [TBL] [Abstract][Full Text] [Related]
90. SPIO-enhanced 0.35T MRI-guided radiotherapy for liver malignancies: usefulness in tumor visualization. Hama Y; Tate E Br J Radiol; 2022 Jul; 95(1135):20211131. PubMed ID: 35333542 [TBL] [Abstract][Full Text] [Related]
92. Noninvasive Tracking of Implanted Cells: Superparamagnetic Iron Oxide Nanoparticles as a Long-Term, Multimodal Imaging Label. Sriramvenugopal M; Pacak CA Methods Mol Biol; 2020; 2126():167-175. PubMed ID: 32112388 [TBL] [Abstract][Full Text] [Related]
93. In vivo monitoring of rat macrophages labeled with poly(l-lysine)-iron oxide nanoparticles. Babič M; Schmiedtová M; Poledne R; Herynek V; Horák D J Biomed Mater Res B Appl Biomater; 2015 Aug; 103(6):1141-8. PubMed ID: 25283523 [TBL] [Abstract][Full Text] [Related]
94. Imaging of a high concentration of iron labeled cells with positive contrast in a rat knee. Magnitsky S; Pickup S; Garwood M; Idiyatullin D Magn Reson Med; 2019 Mar; 81(3):1947-1954. PubMed ID: 30242896 [TBL] [Abstract][Full Text] [Related]
95. Flow-mediated stem cell labeling with superparamagnetic iron oxide nanoparticle clusters. Clay N; Baek K; Shkumatov A; Lai MH; Smith CE; Rich M; Kong H ACS Appl Mater Interfaces; 2013 Oct; 5(20):10266-73. PubMed ID: 24033276 [TBL] [Abstract][Full Text] [Related]
96. Rapid spectrophotometric technique for quantifying iron in cells labeled with superparamagnetic iron oxide nanoparticles: potential translation to the clinic. Dadashzadeh ER; Hobson M; Henry Bryant L; Dean DD; Frank JA Contrast Media Mol Imaging; 2013; 8(1):50-6. PubMed ID: 23109392 [TBL] [Abstract][Full Text] [Related]
97. Superparamagnetic Iron Oxide-Erastin-Polyethylene Glycol Nanotherapeutic Platform: A Ferroptosis-Based Approach for the Integrated Diagnosis and Treatment of Nasopharyngeal Cancer. Tang H; Zhou X; Liu L; Wang Z; Wang C; Luo N; Jin G Mol Pharm; 2024 Jun; 21(6):2767-2780. PubMed ID: 38736196 [TBL] [Abstract][Full Text] [Related]
98. Polymer-brush-afforded SPIO Nanoparticles Show a Unique Biodistribution and MR Imaging Contrast in Mouse Organs. Chen T; Mori Y; Inui-Yamamoto C; Komai Y; Tago Y; Yoshida S; Takabatake Y; Isaka Y; Ohno K; Yoshioka Y Magn Reson Med Sci; 2017 Oct; 16(4):275-283. PubMed ID: 28132997 [TBL] [Abstract][Full Text] [Related]
99. Cellular Magnetic Resonance Imaging for Tracking Metastatic Cancer Cells in the Brain. Parkins KM; Makela AV; Hamilton AM; Foster PJ Methods Mol Biol; 2019; 1869():239-251. PubMed ID: 30324528 [TBL] [Abstract][Full Text] [Related]