BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28467834)

  • 1. Nickel(II) Inhibits Tet-Mediated 5-Methylcytosine Oxidation by High Affinity Displacement of the Cofactor Iron(II).
    Yin R; Mo J; Dai J; Wang H
    ACS Chem Biol; 2017 Jun; 12(6):1494-1498. PubMed ID: 28467834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel(ii) inhibits the oxidation of DNA 5-methylcytosine in mammalian somatic cells and embryonic stem cells.
    Yin R; Mo J; Dai J; Wang H
    Metallomics; 2018 Mar; 10(3):504-512. PubMed ID: 29536999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanistic overview of TET-mediated 5-methylcytosine oxidation.
    Ponnaluri VK; Maciejewski JP; Mukherji M
    Biochem Biophys Res Commun; 2013 Jun; 436(2):115-20. PubMed ID: 23727577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleobase Modifiers Identify TET Enzymes as Bifunctional DNA Dioxygenases Capable of Direct N-Demethylation.
    Ghanty U; Wang T; Kohli RM
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11312-11315. PubMed ID: 32271979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals.
    Yin R; Mao SQ; Zhao B; Chong Z; Yang Y; Zhao C; Zhang D; Huang H; Gao J; Li Z; Jiao Y; Li C; Liu S; Wu D; Gu W; Yang YG; Xu GL; Wang H
    J Am Chem Soc; 2013 Jul; 135(28):10396-403. PubMed ID: 23768208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Activatable TET-Dioxygenases Reveal Dynamics of 5-Methylcytosine Oxidation and Transcriptome Reorganization.
    Palei S; Buchmuller B; Wolffgramm J; Muñoz-Lopez Á; Jung S; Czodrowski P; Summerer D
    J Am Chem Soc; 2020 Apr; 142(16):7289-7294. PubMed ID: 32286069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction: Metals in Biology: α-Ketoglutarate/Iron-Dependent Dioxygenases.
    Guengerich FP
    J Biol Chem; 2015 Aug; 290(34):20700-20701. PubMed ID: 26152720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TET Family of Dioxygenases: Crucial Roles and Underlying Mechanisms.
    Li D; Guo B; Wu H; Tan L; Lu Q
    Cytogenet Genome Res; 2015; 146(3):171-80. PubMed ID: 26302812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5-Methylcytosine is Oxidized to the Natural Metabolites of TET Enzymes by a Biomimetic Iron(IV)-Oxo Complex.
    Jonasson NSW; Daumann LJ
    Chemistry; 2019 Sep; 25(52):12091-12097. PubMed ID: 31211459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A vitamin-C-derived DNA modification catalysed by an algal TET homologue.
    Xue JH; Chen GD; Hao F; Chen H; Fang Z; Chen FF; Pang B; Yang QL; Wei X; Fan QQ; Xin C; Zhao J; Deng X; Wang BA; Zhang XJ; Chu Y; Tang H; Yin H; Ma W; Chen L; Ding J; Weinhold E; Kohli RM; Liu W; Zhu ZJ; Huang K; Tang H; Xu GL
    Nature; 2019 May; 569(7757):581-585. PubMed ID: 31043749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenite Targets the Zinc Finger Domains of Tet Proteins and Inhibits Tet-Mediated Oxidation of 5-Methylcytosine.
    Liu S; Jiang J; Li L; Amato NJ; Wang Z; Wang Y
    Environ Sci Technol; 2015 Oct; 49(19):11923-31. PubMed ID: 26355596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic Iron Complex Achieves TET Enzyme Reactivity*.
    Schmidl D; Jonasson NSW; Korytiaková E; Carell T; Daumann LJ
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21457-21463. PubMed ID: 34181314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phage-encoded ten-eleven translocation dioxygenase (TET) is active in C5-cytosine hypermodification in DNA.
    Burke EJ; Rodda SS; Lund SR; Sun Z; Zeroka MR; O'Toole KH; Parker MJ; Doshi DS; Guan C; Lee YJ; Dai N; Hough DM; Shnider DA; Corrêa IR; Weigele PR; Saleh L
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34155108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine.
    Cadet J; Wagner JR
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Mechanisms of Generation, Recognition, and Erasure of DNA 5-Methylcytosine and Thymine Oxidations.
    Hashimoto H; Zhang X; Vertino PM; Cheng X
    J Biol Chem; 2015 Aug; 290(34):20723-20733. PubMed ID: 26152719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive/negative ion-switching-based LC-MS/MS method for quantification of cytosine derivatives produced by the TET-family 5-methylcytosine dioxygenases.
    Dey AS; Ayon NJ; Bhattacharya C; Gutheil WG; Mukherji M
    Biol Methods Protoc; 2020; 5(1):bpaa019. PubMed ID: 33376805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrazones as novel epigenetic modulators: Correlation between TET 1 protein inhibition activity and their iron(II) binding ability.
    Jakubek M; Kejík Z; Kaplánek R; Antonyová V; Hromádka R; Šandriková V; Sýkora D; Martásek P; Král V
    Bioorg Chem; 2019 Jul; 88():102809. PubMed ID: 30999246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic Space Engineering as a Strategy to Activate C-H Oxidation on 5-Methylcytosine in Mammalian Genome.
    Sappa S; Dey D; Sudhamalla B; Islam K
    J Am Chem Soc; 2021 Aug; 143(31):11891-11896. PubMed ID: 34323479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cAMP signaling regulates DNA hydroxymethylation by augmenting the intracellular labile ferrous iron pool.
    Camarena V; Sant DW; Huff TC; Mustafi S; Muir RK; Aron AT; Chang CJ; Renslo AR; Monje PV; Wang G
    Elife; 2017 Dec; 6():. PubMed ID: 29239726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charting oxidized methylcytosines at base resolution.
    Wu H; Zhang Y
    Nat Struct Mol Biol; 2015 Sep; 22(9):656-61. PubMed ID: 26333715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.