These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28467839)

  • 1. Preparation of Hollow Biopolymer Nanospheres Employing Starch Nanoparticle Templates for Enhancement of Phenolic Acid Antioxidant Activities.
    Li X; Li M; Liu J; Ji N; Liang C; Sun Q; Xiong L
    J Agric Food Chem; 2017 May; 65(19):3868-3882. PubMed ID: 28467839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenolic acids in some cereal grains and their inhibitory effect on starch liquefaction and saccharification.
    Kandil A; Li J; Vasanthan T; Bressler DC
    J Agric Food Chem; 2012 Aug; 60(34):8444-9. PubMed ID: 22793673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of size-controlled starch-based nanospheres by nanoprecipitation.
    Tan Y; Xu K; Li L; Liu C; Song C; Wang P
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):956-9. PubMed ID: 20356023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains.
    Qiu C; Chang R; Yang J; Ge S; Xiong L; Zhao M; Li M; Sun Q
    Food Chem; 2017 Apr; 221():1426-1433. PubMed ID: 27979111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical structure and absorption properties of tailor-made porous starch granules produced by selected amylolytic enzymes.
    Jung YS; Lee BH; Yoo SH
    PLoS One; 2017; 12(7):e0181372. PubMed ID: 28727742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-assisted fabrication of hollow CdSe nanospheres via Ostwald ripening and their microwave absorption properties.
    Cao M; Lian H; Hu C
    Nanoscale; 2010 Dec; 2(12):2619-23. PubMed ID: 20967389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible light catalysis-assisted assembly of Ni(h)-QD hollow nanospheres in situ via hydrogen bubbles.
    Li ZJ; Fan XB; Li XB; Li JX; Ye C; Wang JJ; Yu S; Li CB; Gao YJ; Meng QY; Tung CH; Wu LZ
    J Am Chem Soc; 2014 Jun; 136(23):8261-8. PubMed ID: 24835886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan hollow nanospheres fabricated from biodegradable poly-D,L-lactide-poly(ethylene glycol) nanoparticle templates.
    Wang W; Luo C; Shao S; Zhou S
    Eur J Pharm Biopharm; 2010 Nov; 76(3):376-83. PubMed ID: 20816958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-small and innocuous cationic starch nanospheres: preparation, characterization and drug delivery study.
    Huang Y; Liu M; Gao C; Yang J; Zhang X; Zhang X; Liu Z
    Int J Biol Macromol; 2013 Jul; 58():231-9. PubMed ID: 23587995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and Structural Properties of Novel Short Linear Glucan/Protein Hybrid Nanoparticles and Their Influence on the Rheological Properties of Starch Gel.
    Li X; Ji N; Li M; Zhang S; Xiong L; Sun Q
    J Agric Food Chem; 2017 Sep; 65(36):7955-7965. PubMed ID: 28837776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch.
    Say R; Şenay RH; Biçen Ö; Ersöz A; Şişman Yılmaz F; Akgöl S; Denizli A
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):1900-6. PubMed ID: 23498211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow periodic mesoporous organosilica nanospheres by a facile emulsion approach.
    Ma X; Zhang J; Dang M; Wang J; Tu Z; Yuwen L; Chen G; Su X; Teng Z
    J Colloid Interface Sci; 2016 Aug; 475():66-71. PubMed ID: 27156086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-small and anionic starch nanospheres: formation and vitro thrombolytic behavior study.
    Huang Y; Ding S; Liu M; Gao C; Yang J; Zhang X; Ding B
    Carbohydr Polym; 2013 Jul; 96(2):426-34. PubMed ID: 23768583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled synthesis of monodisperse sub-100 nm hollow SnO2 nanospheres: a template- and surfactant-free solution-phase route, the growth mechanism, optical properties, and application as a photocatalyst.
    Wu W; Zhang S; Zhou J; Xiao X; Ren F; Jiang C
    Chemistry; 2011 Aug; 17(35):9708-19. PubMed ID: 21735499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch.
    Shang Y; Chao C; Yu J; Copeland L; Wang S; Wang S
    J Agric Food Chem; 2018 Jun; 66(25):6357-6363. PubMed ID: 29863858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of fibre and gelatinised starch type on amylolysis and apparent viscosity during in vitro digestion at a physiological shear rate.
    Hardacre AK; Yap SY; Lentle RG; Monro JA
    Carbohydr Polym; 2015 Jun; 123():80-8. PubMed ID: 25843837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hollow nanosphere fabricated from β-cyclodextrin-grafted α,β-poly(aspartic acid) as the carrier of camptothecin.
    Zeng J; Huang H; Liu S; Xu H; Huang J; Yu J
    Colloids Surf B Biointerfaces; 2013 May; 105():120-7. PubMed ID: 23376743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of starch nanospheres through hydrophobic modification followed by initial water dialysis.
    Gu F; Li BZ; Xia H; Adhikari B; Gao Q
    Carbohydr Polym; 2015 Jan; 115():605-12. PubMed ID: 25439938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strategy to synthesize hollow micro/nanospheres with tunable shell thickness.
    Yang G; Cui H; Wang C
    Chemphyschem; 2014 Feb; 15(2):374-81. PubMed ID: 24376094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme encapsulated hollow silica nanospheres for intracellular biocatalysis.
    Chang FP; Hung Y; Chang JH; Lin CH; Mou CY
    ACS Appl Mater Interfaces; 2014 May; 6(9):6883-90. PubMed ID: 24694065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.