BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 28467854)

  • 1. Reversible Heterolytic Cleavage of the H-H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride.
    Zhang S; Appel AM; Bullock RM
    J Am Chem Soc; 2017 May; 139(21):7376-7387. PubMed ID: 28467854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes with Bound Amines.
    Zhang S; Bullock RM
    Inorg Chem; 2015 Jul; 54(13):6397-409. PubMed ID: 26054002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays.
    Bullock RM; Helm ML
    Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, characterization, and reactivity of Fe complexes containing cyclic diazadiphosphine ligands: the role of the pendant base in heterolytic cleavage of H2.
    Liu T; Chen S; O'Hagan MJ; Rakowski DuBois M; Bullock RM; DuBois DL
    J Am Chem Soc; 2012 Apr; 134(14):6257-72. PubMed ID: 22394350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and structure of CpMo(CO)(dppe)H and its oxidation by Ph3C+.
    Cheng TY; Szalda DJ; Zhang J; Bullock RM
    Inorg Chem; 2006 Jun; 45(12):4712-20. PubMed ID: 16749835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of a series of [Ni(P(R)2N(Ph)2)2(CH3CN)]2+ complexes as electrocatalysts for H2 production: substituent variation at the phosphorus atom of the P2N2 ligand.
    Kilgore UJ; Stewart MP; Helm ML; Dougherty WG; Kassel WS; DuBois MR; DuBois DL; Bullock RM
    Inorg Chem; 2011 Nov; 50(21):10908-18. PubMed ID: 21999814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid, reversible heterolytic cleavage of bound H2.
    Hulley EB; Welch KD; Appel AM; DuBois DL; Bullock RM
    J Am Chem Soc; 2013 Aug; 135(32):11736-9. PubMed ID: 23889300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of Pendant Bases into Rh(diphosphine)2 Complexes: Synthesis, Thermodynamic Studies, And Catalytic CO2 Hydrogenation Activity of [Rh(P2N2)2](+) Complexes.
    Lilio AM; Reineke MH; Moore CE; Rheingold AL; Takase MK; Kubiak CP
    J Am Chem Soc; 2015 Jul; 137(25):8251-60. PubMed ID: 26042557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehydrogenation, disproportionation and transfer hydrogenation reactions of formic acid catalyzed by molybdenum hydride compounds.
    Neary MC; Parkin G
    Chem Sci; 2015 Mar; 6(3):1859-1865. PubMed ID: 29308136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forays into rhodium macrocyclic chemistry stabilized by a P
    Yeo A; Sanz CA; Fryzuk MD
    Dalton Trans; 2021 Jan; 50(3):899-907. PubMed ID: 33351000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity of Cyclopentadienyl Molybdenum Compounds towards Formic Acid: Structural Characterization of CpMo(PMe
    Neary MC; Parkin G
    Inorg Chem; 2017 Feb; 56(3):1511-1523. PubMed ID: 28103030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic insights into catalytic h(2) oxidation by ni complexes containing a diphosphine ligand with a positioned amine base.
    Yang JY; Bullock RM; Shaw WJ; Twamley B; Fraze K; DuBois MR; DuBois DL
    J Am Chem Soc; 2009 Apr; 131(16):5935-45. PubMed ID: 19341269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two pathways for electrocatalytic oxidation of hydrogen by a nickel bis(diphosphine) complex with pendant amines in the second coordination sphere.
    Yang JY; Smith SE; Liu T; Dougherty WG; Hoffert WA; Kassel WS; Rakowski DuBois M; DuBois DL; Bullock RM
    J Am Chem Soc; 2013 Jul; 135(26):9700-12. PubMed ID: 23631473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Bridgehead Steric Bulk on the Intramolecular C-H Heterolysis of [FeFe]-Hydrogenase Active Site Models Containing a P2N2 Pendant Amine Ligand.
    Zheng D; Wang M; Wang N; Cheng M; Sun L
    Inorg Chem; 2016 Jan; 55(2):411-8. PubMed ID: 26230977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Oxidation of H
    Isegawa M; Matsumoto T; Ogo S
    Inorg Chem; 2020 Jan; 59(2):1014-1028. PubMed ID: 31898897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly active, low-valence molybdenum- and tungsten-amide catalysts for bifunctional imine-hydrogenation reactions.
    Chakraborty S; Blacque O; Fox T; Berke H
    Chem Asian J; 2014 Jan; 9(1):328-37. PubMed ID: 24129970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of pendant amines in the breaking and forming of molecular hydrogen catalyzed by nickel complexes.
    Raugei S; Chen S; Ho MH; Ginovska-Pangovska B; Rousseau RJ; Dupuis M; DuBois DL; Bullock RM
    Chemistry; 2012 May; 18(21):6493-506. PubMed ID: 22532421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, facile deprotonation, and rapid H/D exchange of the mu-hydride diiron model complexes of the [FeFe]-hydrogenase containing a pendant amine in a chelating diphosphine ligand.
    Wang N; Wang M; Liu J; Jin K; Chen L; Sun L
    Inorg Chem; 2009 Dec; 48(24):11551-8. PubMed ID: 20000647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterolytic cleavage of hydrogen by an iron hydrogenase model: an Fe-H⋅⋅⋅H-N dihydrogen bond characterized by neutron diffraction.
    Liu T; Wang X; Hoffmann C; DuBois DL; Bullock RM
    Angew Chem Int Ed Engl; 2014 May; 53(21):5300-4. PubMed ID: 24757087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.
    O'Hagan M; Shaw WJ; Raugei S; Chen S; Yang JY; Kilgore UJ; DuBois DL; Bullock RM
    J Am Chem Soc; 2011 Sep; 133(36):14301-12. PubMed ID: 21595478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.